Electronic Stability of Bimetallic Au$ _{\textbf{2}} $@Cu$ _{\textbf{6}} $ Nanocluster: Closed-Shell Interaction and Multicenter Bonding
doi: 10.1063/1674-0068/cjcp1912200
-
摘要: 采用密度泛函理论方法,研究了近年来实验报道的双金属纳米团簇Au$ _2 $$ @ $Cu$ _6 $的电子结构和成键特征.一般认为,纳米团簇Au$ _2 $$ @ $Cu$ _6 $中(CuSH)$ _6 $环和(Au$ _2 $PH$ _3 $)$ _2 $两部分之间的相互作用可以看作是d$ ^{10} $-$ \sigma $闭壳相互作用.然而,化学成键分析表明,两个部分之间存在一个十中心两电子(10c-2e)的多中心键.将该结构与其他双金属纳米团簇M$ _2 $$ @ $Cu$ _6 $(M = Ag、Cu、Zn、Cd、Hg)做对比分析,结果表明除了d$ ^{10} $-$ \sigma $闭壳层相互作用外,多中心键也是配合物的电子结构稳定性的原因.这一结果将为理解闭壳层相互作用提供有利的帮助.Abstract: Metallophilic interaction is a unique type of weak intermolecular interaction, where the electronic configuration of two metal atoms is closed shell. Despite its significance in multidisciplinary fields, the nature of metallophilic interaction is still not well understood. In this work, we investigated the electronic structures and bonding characteristic of bimetallic Au$ _{2} $@Cu$ _{6} $ nanocluster through density functional theory method, which was reported in experiments recently [Angew. Chem. Int. Ed. 55 , 3611 (2016)]. In general thinking, interaction between two moieties of (CuSH)$ _{6} $ ring and (Au$ _{2} $PH$ _{3} $)$ _{2} $ in the Au$ _{2} $@Cu$ _{6} $ nanocluster can be viewed as a d$ ^{10} $-$ \sigma $ closed-shell interaction. However, chemical bonding analysis shows that there is a ten center-two electron (10c-2e) multicenter bonding between two moieties. Further comparative studies on other bimetallic nanocluster M$ _{2} $@Cu$ _{6} $ (M = Ag, Cu, Zn, Cd, Hg) also revealed that multicenter bonding is the origin of electronic stability of the complexes besides the d$ ^{10} $-$ \sigma $ closed-shell interaction. This will provide valuable insights into the understanding of closed-shell interactions.
-
Figure 3. AdNDP chemical bonding analysis for the multicenter bond (10c-2e) of M$ _{2} $@Cu$ _{6} $. Cu$ _{2} $:(CuNH$ _{3} $)$ _{2} $@(CuSH)$ _{6} $, Ag$ _{2} $:(AgPH$ _{3} $)$ _{2} $@(CuSH)$ _{6} $, Zn$ _{2} $:(ZnCl)$ _{2} $@(CuSH)$ _{6} $), Cd$ _{2} $: (CdCl)$ _{2} $@(CuSH)$ _{6} $), Hg$ _{2} $:(CdCl)$ _{2} $@(CuSH)$ _{6} $). $ E $$ _{\rm{b}} $ gives the binding energy. For color image, see the online version
Figure 4. The variation trend of binding energies with the vertical distance between two units in (a) (ZnCl)$ _{2} $@(CuSH)$ _{6} $; and (b) X$ _{2} $@(CuSH)$ _{6} $ (X = F, Cl, Br, I). $ R $ is distance between the center of monomer and the center of the hexagonal ring. For color image, see the online version
Figure 7. The variation of binding energies with the different ligands in two systems: (a) (AgL)$ _{2} $@(CuSH)$ _{6} $ (L = PH$ _{3} $, NH$ _{3} $, CO), (b) (ZnX)$ _{2} $@(CuSH)$ _{6} $ (X = F, Cl, Br, I, SiH$ _{3} $) systems. Labeled are contours of deformation densities. For color image, see the online version
Table Ⅰ. Energy decomposition analysis results (in kJ/mol) between the hexagonal ring Cu6 and the monomer in the M2@Cu6 complexes (M=Cu, Ag, Au, Zn, Cd, Hg)a.
-
[1] X. Kang, S. X. Wang, Y. B. Song, S. Jin, G. D. Sun, H. Z. Yu, and M. Z. Zhu, Angew. Chem. Int. Ed. 55 3611 (2016). doi: 10.1002/anie.201600241 [2] A. N. Chernyshev, M. V. Chernysheva, P. Hirva, V. Y. Kukushkin, and M. Haukka, Dalton Trans. 44 14523 (2015). doi: 10.1039/C4DT03167A [3] Q. Liu, M. Xie, X. Y. Chang, S. Cao, C. Zou, W. F. Fu, C. M. Che, Y. Chen, and W. Lu, Angew. Chem. Int. Ed. 57 6279 (2018). doi: 10.1002/anie.201803965 [4] M. Gil-Moles, M. C. Gimeno, J. M. López-de-Luzuriaga, M. Monge, M. E. Olmos, and D. Pascual, Inorg. Chem. 56 9281 (2017). doi: 10.1021/acs.inorgchem.7b01342 [5] G. Chen, S. T. Wang, B. Feng, B. Jiang, and M. Miao, Food Chem. 277 632 (2019). doi: 10.1016/j.foodchem.2018.11.024 [6] R. Echeverría, J. M. López-De-Luzuriaga, M. Monge, S. Moreno, and M. E. Olmos, Inorg. Chem. 55 10523 (2016). doi: 10.1021/acs.inorgchem.6b01749 [7] P. Pyykkö, Angew. Chem. Int. Ed. 43 4412 (2004). doi: 10.1002/anie.200300624 [8] P. Pyykkö, Chem. Soc. Rev. 37 1967 (2008). doi: 10.1039/b708613j [9] S. Sculfort and P. Braunstein, Chem. Soc. Rev. 40 2741 (2011). doi: 10.1039/c0cs00102c [10] P. K. Mehrotra and R. Hoffmann, Inorg. Chem. 17 2187 (1978). doi: 10.1021/ic50186a032 [11] J. Muñiz, C. Wang, and P. Pyykkö, Chem. Eur. J. 17 368 (2011). doi: 10.1002/chem.201001765 [12] D. Blasco, J. M. López-de-Luzuriaga, M. Monge, M. E. Olmos, D. Pascual, and M. Rodríguez-Castillo, Inorg. Chem. 57 3805 (2018). doi: 10.1021/acs.inorgchem.7b03131 [13] Z. Assefa, F. DeStefano, M. A. Garepapaghi, J. H. LaCasce, S. Ouellete, M. R. Corson, J. K. Nagle, and H. H. Patterson, Inorg. Chem. 30 2868 (1991). doi: 10.1021/ic00014a010 [14] M. B. Brands, J. Nitsch, and C. F. Guerra, Inorg. Chem. 57 2603 (2018). doi: 10.1021/acs.inorgchem.7b02994 [15] H. Schmidbaur and A. Schier, Chem. Soc. Rev. 41 370 (2012). doi: 10.1039/C1CS15182G [16] P. Pyykkö, Chem. Rev. 97 597 (1997). doi: 10.1021/cr940396v [17] H. Y. Wang and L. J. Cheng, Nanoscale 9 13209 (2017). doi: 10.1039/C7NR03114A [18] A. Kalemos, J. Phys. Chem. A 122 8882 (2018). [19] X. W. Chi, Q. Y. Wu, Q. Hao, J. H. Lan, C. Z. Wang, Q. Zhang, Z. F. Chai, and W. Q. Shi, Organometallics 37 3678 (2018). doi: 10.1021/acs.organomet.8b00391 [20] J. M. López-De-Luzuriaga, M. Monge, M. E. Olmos, and D. Pascual, Organometallics 34 3029 (2015). doi: 10.1021/acs.organomet.5b00334 [21] Q. J. Zheng, C. Xu, X. Wu, and L. J. Cheng, ACS Omega 3 14423 (2018). doi: 10.1021/acsomega.8b01841 [22] A. K. Friesen, N. V. Ulitin, S. L. Khursan, D. A. Shiyan, K. A. Tereshchenko, and S. V. Kolesov, Mendeleev Commun. 27 374 (2017). doi: 10.1016/j.mencom.2017.07.018 [23] H. Cheng and L. J. Cheng, Comput. Theor. Chem. 1060 36 (2015). doi: 10.1016/j.comptc.2015.02.020 [24] L. F. Li, C. Xu, and L. J. Cheng, Comput. Theor. Chem. 1021 144 (2013). doi: 10.1016/j.comptc.2013.07.001 [25] Q. Y. Zhang and L. J. Cheng, J. Chem. Inf. Model. 55 1012 (2015). doi: 10.1021/acs.jcim.5b00069 [26] H. Ari, Z. Büyükmumcu, and T. Özpozan, J. Mol. Struct. 1165 259 (2018). doi: 10.1016/j.molstruc.2018.03.115 [27] S. A. Ivanov, I. Arachchige, and C. M. Aikens, J. Phys. Chem. A 115 8017 (2011). doi: 10.1021/jp200346c [28] D. E. Jiang, W. Chen, R. L. Whetten, and Z. F. Chen, J. Phys. Chem. C 113 16983 (2009). doi: 10.1021/jp906823d [29] A. Lechtken, C. Neiss, M. M. Kappes, and D. Schooss, Phys. Chem. Chem. Phys. 11 4344 (2009). doi: 10.1039/b821036e [30] Q. M. Liu and L. J. Cheng, J. Alloy Compd. 771 762 (2019). doi: 10.1016/j.jallcom.2018.08.033 [31] D. W. Szczepanik and J. Mrozek, Comput. Theor. Chem. 1026 72 (2013). doi: 10.1016/j.comptc.2013.10.015 [32] Y. J. Cui and L. J. Cheng, RSC Adv. 7 49526 (2017). doi: 10.1039/C7RA09023D [33] D. Y. Zubarev and A. I. Boldyrev, Phys. Chem. Chem. Phys. 10 5207 (2008). doi: 10.1039/b804083d [34] L. J. Yan, L. J. Cheng, and J. L. Yang, Chin. J. Chem. Phys. 28 476 (2015). doi: 10.1063/1674-0068/28/cjcp1505105 [35] D. Y. Zubarev and A. I. Boldyrev, J. Org. Chem. 73 9251 (2008). doi: 10.1021/jo801407e [36] Y. F. Shen, C. Xu, and L. J. Cheng, RSC Adv. 7 36755 (2017). doi: 10.1039/C7RA06811E [37] A. P. Sergeeva and A. I. Boldyrev, Comment. Inorg. Chem. 31 2 (2010). doi: 10.1080/02603590903498639 [38] D. Y. Zubarev, D. Domin, and W. A. Lester Jr., J. Phys. Chem. A 114 3074 (2010). doi: 10.1021/jp906914y [39] D. W. Szczepanik, Comput. Theor. Chem. 1100 13 (2017). doi: 10.1016/j.comptc.2016.12.003 [40] D. Szczepanik and J. Mrozek, J. Math. Chem. 51 1388 (2013). doi: 10.1007/s10910-013-0153-8 [41] D. W. Szczepanik and J. Mrozek, J. Chem. 2013 684134 (2013). [42] G. Frenking and S. Shaik, The Chemical Bond: Chemical Bonding Across the Periodic Table Weinheim: John Wiley & Sons, (2014). [43] E. J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F. Bickelhaupt, C. Bo, P. Boerrigter, L. Cavallo, and D. Chong, Theoretical Chemistry Amsterdam: Vrije Universiteit ADF2014, (2014). http://www.scm.com. [44] B. Silvi, Struct. Chem. 28 1389 (2017). doi: 10.1007/s11224-017-0962-7 [45] N. K. Nkungli and J. N. Ghogomu, J. Mol. Model. 23 200 (2017). doi: 10.1007/s00894-017-3370-4 [46] S. Berski and P. Durlak, Polyhedron 129 22 (2017). doi: 10.1016/j.poly.2017.03.024 [47] J. G. Du and G. Jiang, Eur. J. Inorg. Chem. 2016 1589 (2016). doi: 10.1002/ejic.201501412 [48] A. D. Dergunov, E. A. Smirnova, A. Merched, S. Visvikis, G. Siest, V. V. Yakushkin, and V. Tsibulsky, Biochim. Biophys. Acta 1484 14 (2000). doi: 10.1016/S1388-1981(99)00196-1 [49] Z. M. Tian and L. J. Cheng, J. Phys. Chem. C 121 20458 (2017). doi: 10.1021/acs.jpcc.7b05398 [50] M. Huang, C. Xu, and L. J. Cheng, Acta Chim. Sin. 74 758 (2016). doi: 10.6023/A16050230