Enhancement of electron–positron pairs in combined potential wells with linear chirp frequency
doi: 10.1088/1674-1056/ac744b
-
Abstract: Effect of linear chirp frequency on the process of electron–positron pairs production from vacuum is investigated by the computational quantum field theory. With appropriate chirp parameters, the number of electrons created under combined potential wells can be increased by two or three times. In the low frequency region, frequency modulation excites interference effect and multiphoton processes, which promotes the generation of electron–positron pairs. In the high frequency region, high frequency suppression inhibits the generation of electron–positron pairs. In addition, for a single potential well, the number of created electron–positron pairs can be enhanced by several orders of magnitude in the low frequency region.
-
1. Contour profile plot of the space-time structure for combined potential wells, i.e., (a) for the oscillating potential well, (b) for the static potential well. The fundamental frequency is set to ω 0 = 0.5 c 2. The chirp parameter is set to b = 0.0067 c 4, where t 1 = 20 π/ c 2 a.u. The space size is set to L = 2. Other parameters are set to V 1 = V 2 = 1.5 c 2, W = 0.3 λ e, D = 10 λ e, λ e = 1/ c, and t 0 = 5/ c 2 a.u.
2. Number of created electrons as a function of chirp parameter b for ω 0 = 1.0 c 2. Other parameters are the same as in Fig. 1.
3. (a) The number of created electrons as a function of time and (b) energy spectrum of created electrons for b = 0 (the black dashed curve), 0.008 c 4 (the red dotted curve), 0.019 c 4 (the blue solid curve), and 0.030 c 4 (the green dotted and dashed curve). The fundamental frequency is set to ω 0 = 1.0 c 2. Other parameters are the same as in Fig. 1.
4. The probability density of created electrons for b = 0 (the black solid curve), 0.0056 c 4 (the red dotted and dashed curve), 0.0087 c 4 (the blue dotted curve). The fundamental frequency is set to ω 0 = 1.0 c 2. Other parameters are the same as in Fig. 1.
5. Energy spectrum of created electrons under the fixed frequency (the black dotted curve) with ω 0 = 1.9 c 2, b = 0 and frequency modulation (the red solid curve) with ω 0 = 1.9 c 2, b = 0.0016 c 4. Other parameters are the same as in Fig. 1.
6. Number of created electrons as a function of chirp parameter b for ω 0 = 0.5 c 2 (the black dotted curve), 1.5 c 2 (the red dotted and dashed curve), 1.9 c 2 (the blue dashed curve), and 2.0 c 2 (the green solid curve). Other parameters are the same as in Fig. 1.
7. Number of created electrons varying with fundamental frequency ω 0 for b = 0. Other parameters are the same as in Fig. 1.
9. Number of created electrons as a function of chirp parameter b for ω 0 = 0.1 c 2 (the black dotted curve), 0.5 c 2 (the red dotted and dashed curve), 1.5 c 2 (the blue dashed curve), and 2.0 c 2 (the green solid curve). The potential well depths are set to V 1 = 0, V 2 = 1.5 c 2. Other parameters are the same as in Fig. 1.
10. The contour plot of the final number varying with fundamental frequency ω 0 and chirp parameter b for (a) a single oscillating potential well with V 1 = 0, V 2 = 1.5 c 2, (b) combined potential wells with V 1 = V 2 = 1.5 c 2. Other parameters are the same as in Fig. 1.
Table 1.. The maximum, the minimum number of created electrons and the ratio between them for different fundamental frequencies.
ω 0/ c 2 N min( b = 0) N max R ( N max/ N min) 0.1 1.87 4.58 ( b = 0.029 c 4) 2.45 0.2 1.85 4.69 ( b = 0.027 c 4) 2.54 0.5 1.77 4.76 ( b = 0.025 c 4) 2.69 1.0 2.30 5.13 ( b = 0.019 c 4) 2.23 1.5 4.18 5.39 ( b = 0.013 c 4) 1.29 1.9 5.42 5.65 ( b = 0.001 c 4) 1.04 -
[1] Dirac P A M 1928 Proc. Roy. Soc. Lond.A 117 610 10.1098/rspa.1928.0023 doi: 10.1098/rspa.1928.0023 [2] Anderson C D 1933 Phys. Rev. 43 491 [3] Sauter F 1931 Z. Phys. 69 742 10.1007/BF01339461 doi: 10.1007/BF01339461 [4] Heisenberg W, Euler H 1936 Z. Phys. 98 714 [5] Schwinger J 1951 Phys. Rev. 82 664 10.1103/PhysRev.82.664 doi: 10.1103/PhysRev.82.664 [6] Tsai W Y, Yildiz A 1973 Phys. Rev.D 8 3446 10.1103/PhysRevD.8.3446 doi: 10.1103/PhysRevD.8.3446 [7] Baier V N, Katkov V M, Strakhovenko V M 1974 Sov. Phys. JETP 41 198 [8] Kim S P, Page D N 2002 Phys. Rev.D 65 105002 10.1103/PhysRevD.65.105002 doi: 10.1103/PhysRevD.65.105002 [9] Dunne G V, Schubert C 2005 Phys. Rev.D 72 105004 10.1103/PhysRevD.72.105004 doi: 10.1103/PhysRevD.72.105004 [10] Dunne G V, Wang Q H, Gies H, Schubert C 2006 Phys. Rev.D 73 065028 10.1103/PhysRevD.73.065028 doi: 10.1103/PhysRevD.73.065028 [11] Alkofer R, Hecht M B, Roberts C D, Schmidt S M, Vinnik D V 2001 Phys. Rev. Lett. 87 193902 10.1103/PhysRevLett.87.193902 doi: 10.1103/PhysRevLett.87.193902 [12] Roberts C D, Schmidt S M, Vinnik D V 2002 Phys. Rev. Lett. 89 153901 10.1103/PhysRevLett.89.153901 doi: 10.1103/PhysRevLett.89.153901 [13] Kluger Y, Mottola E, Eisenberg J M 1998 Phys. Rev.D 58 125015 10.1103/PhysRevD.58.125015 doi: 10.1103/PhysRevD.58.125015 [14] Hebenstreit F, Ilderton A, Marklund M, Zamanian J 2011 Phys. Rev.D 83 065007 10.1103/PhysRevD.83.065007 doi: 10.1103/PhysRevD.83.065007 [15] Aleksandrov I A, Kohlfürst C 2020 Phys. Rev.D 101 096009 10.1103/PhysRevD.101.096009 doi: 10.1103/PhysRevD.101.096009 [16] Kohlfürst C, Alkofer R 2018 Phys. Rev.D 97 036026 10.1103/PhysRevD.97.036026 doi: 10.1103/PhysRevD.97.036026 [17] Kohlfürst C 2020 Phys. Rev.D 101 096003 10.1103/PhysRevD.101.096003 doi: 10.1103/PhysRevD.101.096003 [18] Cheng T, Su Q, Grobe R 2009 Phys. Rev.A 80 013410 10.1103/PhysRevA.80.013410 doi: 10.1103/PhysRevA.80.013410 [19] Xie B S, Li Z L, Tang S 2017 Matter Radiat. Extrem. 2 225 10.1016/j.mre.2017.07.002 doi: 10.1016/j.mre.2017.07.002 [20] Lv Q Z, Dong S, Li Y T, Sheng Z M, Su Q, Grobe R 2018 Phys. Rev.A 97 022515 10.1103/PhysRevA.97.022515 doi: 10.1103/PhysRevA.97.022515 [21] Burke D L, Field R C, Smith G H, Spencer J E, Walz D 1997 Phys. Rev. Lett. 79 1626 10.1103/PhysRevLett.79.1626 doi: 10.1103/PhysRevLett.79.1626 [22] Li A, Yu J Q, Chen Y Q, Yan X Q, Grobe R 2020 Acta Phys. Sin. 69 019501 (in Chinese) 10.7498/aps.69.20190729 doi: 10.7498/aps.69.20190729 [23] Jiang M, Su W, Lu X, Sheng Z M, Li Y T, Li Y J, Zhang J, Grobe R, Su Q 2011 Phys. Rev.A 83 053402 10.1103/PhysRevA.83.053402 doi: 10.1103/PhysRevA.83.053402 [24] Lv Q Z, Li Y J, Grobe R, Su Q 2013 Phys. Rev.A 88 033403 10.1103/PhysRevA.88.033403 doi: 10.1103/PhysRevA.88.033403 [25] Liu Y, Lv Q Z, Li Y T, Grobe R, Su Q 2015 Phys. Rev.A 91 052123 10.1103/PhysRevA.91.052123 doi: 10.1103/PhysRevA.91.052123 [26] Jiang M, Su W, Lv Q Z, Lu X, Li Y T, Grobe R, Su Q 2012 Phys. Rev.A 85 033408 10.1103/PhysRevA.85.033408 doi: 10.1103/PhysRevA.85.033408 [27] Jiang M, Lv Q Z, Sheng Z M, Grobe R, Su Q 2013 Phys. Rev.A 87 042503 10.1103/PhysRevA.87.042503 doi: 10.1103/PhysRevA.87.042503 [28] Tang S, Xie B S, Lu D, Wang H Y, Fu L B, Liu J 2013 Phys. Rev.A 88 012106 10.1103/PhysRevA.88.012106 doi: 10.1103/PhysRevA.88.012106 [29] Hubbell J H 2006 Radiat. Phys. Chem. 75 614 10.1016/j.radphyschem.2005.10.008 doi: 10.1016/j.radphyschem.2005.10.008 [30] Schützhold R, Gies H, Dunne G 2008 Phys. Rev. Lett. 101 130404 10.1103/PhysRevLett.101.130404 doi: 10.1103/PhysRevLett.101.130404 [31] Orthaber M, Hebenstreit F, Alkofer R 2011 Phys. Lett.B 698 80 10.1016/j.physletb.2011.02.053 doi: 10.1016/j.physletb.2011.02.053 [32] Otto A, Seipt D, Blaschke D, Kämpfer B, Smolyansky S A 2015 Phys. Lett.B 740 335 10.1016/j.physletb.2014.12.010 doi: 10.1016/j.physletb.2014.12.010 [33] Otto A, Seipt D, Blaschke D, Smolyansky S A, Kämpfer B 2015 Phys. Rev.D 91 105018 10.1103/PhysRevD.91.105018 doi: 10.1103/PhysRevD.91.105018 [34] Linder M F, Schneider C, Sicking J, Szpak N, tzhold R 2015 Phys. Rev.D 92 085009 10.1103/PhysRevD.92.085009 doi: 10.1103/PhysRevD.92.085009 [35] Schneider C, tzhold R 2016 J. High Energy Phys. 2016 164 10.1007/JHEP02(2016)164 doi: 10.1007/JHEP02(2016)164 [36] Torgrimsson G, Schneider C, Oertel J, tzhold R 2017 J. High Energy Phys. 2017 043 10.1007/JHEP06(2017)043 doi: 10.1007/JHEP06(2017)043 [37] Torgrimsson G, Schneider C, tzhold R 2018 Phys. Rev.D 97 096004 10.1103/PhysRevD.97.096004 doi: 10.1103/PhysRevD.97.096004 [38] Sitiwaldi I, Xie B S 2018 Phys. Lett.B 777 406 10.1016/j.physletb.2017.12.060 doi: 10.1016/j.physletb.2017.12.060 [39] Gong C, Li Z L, Li Y J 2018 Phys. Rev.A 98 043424 10.1103/PhysRevA.98.043424 doi: 10.1103/PhysRevA.98.043424 [40] Wang L, Wu B, Xie B S 2019 Phys. Rev.A 100 022127 10.1103/PhysRevA.100.022127 doi: 10.1103/PhysRevA.100.022127 [41] Sawut A, Dulat S, Xie B S 2021 Phys. Scr. 96 055305 10.1088/1402-4896/abe9f1 doi: 10.1088/1402-4896/abe9f1 [42] Su D D, Li Y T, Lv Q Z, Zhang J 2020 Phys. Rev.D 101 054501 10.1103/PhysRevD.101.054501 doi: 10.1103/PhysRevD.101.054501 [43] Strickland D, Mourou G 1985 Opt. Commun. 56 219 10.1016/0030-4018(85)90120-8 doi: 10.1016/0030-4018(85)90120-8 [44] Dumlu C K 2010 Phys. Rev.D 82 045007 10.1103/PhysRevD.82.045007 doi: 10.1103/PhysRevD.82.045007 [45] Olugh O, Li Z L, Xie B S, Alkofer R 2019 Phys. Rev.D 99 036003 10.1103/PhysRevD.99.036003 doi: 10.1103/PhysRevD.99.036003 [46] Abdukerim N, Li Z L, Xie B S 2017 Chin. Phys.B 26 020301 10.1088/1674-1056/26/2/020301 doi: 10.1088/1674-1056/26/2/020301 [47] Gong C, Li Z L, Xie B S, Li Y J 2020 Phys. Rev.D 101 016008 10.1103/PhysRevD.101.016008 doi: 10.1103/PhysRevD.101.016008 [48] Li L J, Mohamedsedik M, Xie B S 2021 Phys. Rev.D 104 036015 10.1103/PhysRevD.104.036015 doi: 10.1103/PhysRevD.104.036015 [49] Mohamedsedik M, Li L J, Xie B S 2021 Phys. Rev.D 104 016009 10.1103/PhysRevD.104.016009 doi: 10.1103/PhysRevD.104.016009 [49] Bialynicki-Birula I, Bialynicka-Birula Z 2021 Phys. Rev.A 104 022203 10.1103/PhysRevA.104.022203 doi: 10.1103/PhysRevA.104.022203