Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
doi: 10.1088/1674-1056/ac9224
-
Abstract: Quantum key distribution (QKD) system based on passive silica planar lightwave circuit (PLC) asymmetric Mach–Zehnder interferometers (AMZI) is characterized with thermal stability, low loss and sufficient integration scalability. However, waveguide stresses, both intrinsic and temperature-induced stresses, have significant impacts on the stable operation of the system. We have designed silica AMZI chips of 400 ps delay, with bend waveguides length equalized for both long and short arms to balance the stresses thereof. The temperature characteristics of the silica PLC AMZI chip are studied. The interference visibility at the single photon level is kept higher than 95% over a wide temperature range of 12 °C. The delay time change is 0.321 ps within a temperature change of 40 °C. The spectral shift is 0.0011~nm/0.1 °C. Temperature-induced delay time and peak wavelength variations do not affect the interference visibility. The experiment results demonstrate the advantage of being tolerant to chip temperature fluctuations.
-
1. AMZI chip. Schematic of the encoding/decoding chips that have different designs, including one MZI, one AMZI with 400 ps delay time that (a) the short arm is made up of bend waveguides and straight waveguides; (b) the short arm is made up of straight waveguide. (c) Photograph of the packaged chip.
1. Delay time at 20 °C and 60 °C.
20 °C 60 °C Δ t 2 Encoder 405.323 ps 405.567 ps 0.244 ps Decoder 405.585 ps 405.906 ps 0.321ps Δ t 1 0.262 ps 0.339 ps – 1. Wavelength shift with temperature of decoder at 24.0 °C.
Temperature Δ = –0.1 °C Δ = +0.1 °C Average Δ = –0.2 °C Δ = +0.2 °C Average Simulation 0.00114 nm 0.00114 nm 0.00114 nm 0.00228 nm 0.00228 nm 0.00228 nm Experiment 0.00093 nm 0.00129 nm 0.00111 nm 0.00195 nm 0.00245 nm 0.00220 nm -
[1] Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science 20 124 10.1109/sfcs.1994.365700 doi: 10.1109/sfcs.1994.365700 [2] Sharma P, Agrawal A, Bhatia V, Prakash S, Mishra A K 2021 IEEE Open Journal of the Communications Society 2 2049 10.1109/OJCOMS.2021.3106659 doi: 10.1109/OJCOMS.2021.3106659 [3] Zhang Q, Xu F, Chen Y A, Peng C Z, Pan J W 2018 Opt. Express 26 24260 10.1364/OE.26.024260 doi: 10.1364/OE.26.024260 [4] Sibson P, Kennard J E, Stanisic S, Erven C, O’Brien J L, Thompson M G 2017 Optica 4 172 10.1364/OPTICA.4.000172 doi: 10.1364/OPTICA.4.000172 [5] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys 81 1301 10.1103/RevModPhys.81.1301 doi: 10.1103/RevModPhys.81.1301 [6] Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptology 5 3 10.1007/BF00191318 doi: 10.1007/BF00191318 [7] Geng W, Zhang C, Zheng Y L, He J K, Zhou C, Kong Y C 2019 Opt. Express 27 29045 10.1364/OE.27.029045 doi: 10.1364/OE.27.029045 [8] Grunenfelder F, Boaron A, Rusca D, Martinb A, Zbinden H 2020 Appl. Phys. Lett. 117 144003 10.1063/5.0021468 doi: 10.1063/5.0021468 [9] Sibson P, Erven C, Godfrey M, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, Tanner M G, Natarajan C M, Hadfield R H, O’Brien J L, Thompson M G 2017 Nat. Commun. 8 13984 10.1038/ncomms13984 doi: 10.1038/ncomms13984 [10] Cao L, Luo W, Wang Y X, et al. 2020 Phys. Rev. Appl. 14 011001 10.1103/PhysRevApplied.14.011001 doi: 10.1103/PhysRevApplied.14.011001 [11] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photon. 15 570 10.1038/s41566-021-00828-5 doi: 10.1038/s41566-021-00828-5 [12] Geng J Q, Fan-Yuan G J, Wang S, Zhang Q F, Chen W, Yin Z Q, He D Y, Guo G C, Han Z F 2021 Opt. Lett. 46 6099 10.1364/OL.446939 doi: 10.1364/OL.446939 [13] Mao Y Q, Wang B X, Zhao C X, Wang G Q, Wang R C, Wang H H, Zhou F, Nie J M, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y, Pan J W 2018 Opt. Express 26 6010 10.1364/OE.26.006010 doi: 10.1364/OE.26.006010 [14] Dynes J F, Kindness S J, Tam S W B, Plews A, Sharpe A W, Lucamarini M, Fröhlich B, Yuan Z L, Penty R V, Shields A J 2016 Opt. Express 24 8081 10.1364/OE.24.008081 doi: 10.1364/OE.24.008081 [15] Wang J, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273 10.1038/s41566-019-0532-1 doi: 10.1038/s41566-019-0532-1 [16] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101 10.1038/s41586-018-0551-y doi: 10.1038/s41586-018-0551-y [17] Orieux A, Diamanti E 2016 J. Opt. 18 083002 10.1088/2040-8978/18/8/083002 doi: 10.1088/2040-8978/18/8/083002 [18] Nambu Y, Yoshino K I, Tomita A 2008 J. Mod. Opt. 55 1953 10.1080/09500340801942414 doi: 10.1080/09500340801942414 [19] Li X, Ren M Z, Zhang J S, Wang L L, Chen W, Wang Y, Yin X J, Wu Y D, An J M 2021 Photon. Res. 9 222 10.1364/PRJ.406123 doi: 10.1364/PRJ.406123 [20] Zhang G W, Ding Y Y, Chen W, Wang F X, Ye P, Huang G Z, Wang S, Yin Z Q, An J M, Guo G C, Han Z F 2021 Photon. Res. 9 2176 10.1364/PRJ.432327 doi: 10.1364/PRJ.432327 [21] Dutta A K, Dutta N K, Fujiwara M 2003 WDM Technologies: Active Optical Components, Elsevier Science California Elsevier Science 210 224 [22] Zhao J H, Ryan T, Ho P S 1999 J. Appl. Phys. 85 6421 10.1063/1.370146 doi: 10.1063/1.370146 [23] Liu X B, Tang Z L, Liao C J, Lu F, Liu S H 2006 Chin. J. Quantum Elect. 2 191