留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution

Wu Dan Li Xiao Wang Liang-Liang Zhang Jia-Shun Chen Wei Wang Yue Wang Hong-Jie Li Jian-Guang Yin Xiao-Jie Wu Yuan-Da An Jun-Ming Song Ze-Guo

Wu Dan, Li Xiao, Wang Liang-Liang, Zhang Jia-Shun, Chen Wei, Wang Yue, Wang Hong-Jie, Li Jian-Guang, Yin Xiao-Jie, Wu Yuan-Da, An Jun-Ming, Song Ze-Guo. Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution[J]. JOURNAL OF MECHANICAL ENGINEERING, 2023, 32(1): 010305. doi: 10.1088/1674-1056/ac9224
Citation: Wu Dan, Li Xiao, Wang Liang-Liang, Zhang Jia-Shun, Chen Wei, Wang Yue, Wang Hong-Jie, Li Jian-Guang, Yin Xiao-Jie, Wu Yuan-Da, An Jun-Ming, Song Ze-Guo. Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution[J]. JOURNAL OF MECHANICAL ENGINEERING, 2023, 32(1): 010305. doi: 10.1088/1674-1056/ac9224

Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution

doi: 10.1088/1674-1056/ac9224
  • 1.  AMZI chip. Schematic of the encoding/decoding chips that have different designs, including one MZI, one AMZI with 400 ps delay time that (a) the short arm is made up of bend waveguides and straight waveguides; (b) the short arm is made up of straight waveguide. (c) Photograph of the packaged chip.

    2.  Experimental setup using self-interfering method. Single-mode fiber (SMF) is in yellow; polarization maintaining fiber (PMF) is in red.

    3.  (a) For the encoding chip, interference curves of TE and TM modes at 20.0–30.0 °C and 50.0–60.0 °C, respectively. (b) For the decoding chip, interference curves of TE and TM modes at 20.0–30.0 °C.

    4.  Experimental setup for QKD system.

    5.  The interference curve versus temperature: (a) decoding chip; and (b) encoding chip.

    6.  Interference curve versus temperature ranging from 18 °C to 33 °C. Insert shows inference fringe at the optimal temperature 24.0 °C.

    7.  Output waveform from the digital oscilloscope. The delay time of (a) the encoding chip and (b) decoding chip at 20 °C and 60 °C, respectively.

    8.  For decoding chip at different temperatures near 24 °C, (a) simulated normalized power versus wavelength, (b) measured loss versus wavelength.

    1.   Delay time at 20 °C and 60 °C.

    20 °C 60 °C Δ t 2
    Encoder 405.323 ps 405.567 ps 0.244 ps
    Decoder 405.585 ps 405.906 ps 0.321ps
    Δ t 1 0.262 ps 0.339 ps
    下载: 导出CSV

    1.   Wavelength shift with temperature of decoder at 24.0 °C.

    Temperature
    Δ = –0.1 °C Δ = +0.1 °C Average Δ = –0.2 °C Δ = +0.2 °C Average
    Simulation 0.00114 nm 0.00114 nm 0.00114 nm 0.00228 nm 0.00228 nm 0.00228 nm
    Experiment 0.00093 nm 0.00129 nm 0.00111 nm 0.00195 nm 0.00245 nm 0.00220 nm
    下载: 导出CSV
  • [1] Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science 20 124 10.1109/sfcs.1994.365700 doi: 10.1109/sfcs.1994.365700
    [2] Sharma P, Agrawal A, Bhatia V, Prakash S, Mishra A K 2021 IEEE Open Journal of the Communications Society 2 2049 10.1109/OJCOMS.2021.3106659 doi: 10.1109/OJCOMS.2021.3106659
    [3] Zhang Q, Xu F, Chen Y A, Peng C Z, Pan J W 2018 Opt. Express 26 24260 10.1364/OE.26.024260 doi: 10.1364/OE.26.024260
    [4] Sibson P, Kennard J E, Stanisic S, Erven C, O’Brien J L, Thompson M G 2017 Optica 4 172 10.1364/OPTICA.4.000172 doi: 10.1364/OPTICA.4.000172
    [5] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys 81 1301 10.1103/RevModPhys.81.1301 doi: 10.1103/RevModPhys.81.1301
    [6] Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptology 5 3 10.1007/BF00191318 doi: 10.1007/BF00191318
    [7] Geng W, Zhang C, Zheng Y L, He J K, Zhou C, Kong Y C 2019 Opt. Express 27 29045 10.1364/OE.27.029045 doi: 10.1364/OE.27.029045
    [8] Grunenfelder F, Boaron A, Rusca D, Martinb A, Zbinden H 2020 Appl. Phys. Lett. 117 144003 10.1063/5.0021468 doi: 10.1063/5.0021468
    [9] Sibson P, Erven C, Godfrey M, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, Tanner M G, Natarajan C M, Hadfield R H, O’Brien J L, Thompson M G 2017 Nat. Commun. 8 13984 10.1038/ncomms13984 doi: 10.1038/ncomms13984
    [10] Cao L, Luo W, Wang Y X, et al. 2020 Phys. Rev. Appl. 14 011001 10.1103/PhysRevApplied.14.011001 doi: 10.1103/PhysRevApplied.14.011001
    [11] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photon. 15 570 10.1038/s41566-021-00828-5 doi: 10.1038/s41566-021-00828-5
    [12] Geng J Q, Fan-Yuan G J, Wang S, Zhang Q F, Chen W, Yin Z Q, He D Y, Guo G C, Han Z F 2021 Opt. Lett. 46 6099 10.1364/OL.446939 doi: 10.1364/OL.446939
    [13] Mao Y Q, Wang B X, Zhao C X, Wang G Q, Wang R C, Wang H H, Zhou F, Nie J M, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y, Pan J W 2018 Opt. Express 26 6010 10.1364/OE.26.006010 doi: 10.1364/OE.26.006010
    [14] Dynes J F, Kindness S J, Tam S W B, Plews A, Sharpe A W, Lucamarini M, Fröhlich B, Yuan Z L, Penty R V, Shields A J 2016 Opt. Express 24 8081 10.1364/OE.24.008081 doi: 10.1364/OE.24.008081
    [15] Wang J, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273 10.1038/s41566-019-0532-1 doi: 10.1038/s41566-019-0532-1
    [16] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101 10.1038/s41586-018-0551-y doi: 10.1038/s41586-018-0551-y
    [17] Orieux A, Diamanti E 2016 J. Opt. 18 083002 10.1088/2040-8978/18/8/083002 doi: 10.1088/2040-8978/18/8/083002
    [18] Nambu Y, Yoshino K I, Tomita A 2008 J. Mod. Opt. 55 1953 10.1080/09500340801942414 doi: 10.1080/09500340801942414
    [19] Li X, Ren M Z, Zhang J S, Wang L L, Chen W, Wang Y, Yin X J, Wu Y D, An J M 2021 Photon. Res. 9 222 10.1364/PRJ.406123 doi: 10.1364/PRJ.406123
    [20] Zhang G W, Ding Y Y, Chen W, Wang F X, Ye P, Huang G Z, Wang S, Yin Z Q, An J M, Guo G C, Han Z F 2021 Photon. Res. 9 2176 10.1364/PRJ.432327 doi: 10.1364/PRJ.432327
    [21] Dutta A K, Dutta N K, Fujiwara M 2003 WDM Technologies: Active Optical Components, Elsevier Science California Elsevier Science 210 224
    [22] Zhao J H, Ryan T, Ho P S 1999 J. Appl. Phys. 85 6421 10.1063/1.370146 doi: 10.1063/1.370146
    [23] Liu X B, Tang Z L, Liao C J, Lu F, Liu S H 2006 Chin. J. Quantum Elect. 2 191
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  16
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 网络出版日期:  2023-05-31
  • 刊出日期:  2023-01-01

目录

    /

    返回文章
    返回