Research on control method of spraying system in the icing wind tunnel
-
摘要: 喷雾系统是结冰风洞的核心配套设备,主要用于模拟飞行器穿越云层飞行时的云雾环境。针对该系统结构复杂、控制精度要求高的特点,开展了压力和温度的控制方法研究。通过采用给定水泵转速、预置出入口调节阀开度和闭环调节出口调节阀开度的方法,解决了喷雾耙之间供水压力不一致及相互耦合的问题,实现了宽范围、高精度的供水压力控制。通过在准备阶段循环加热、在试验阶段变参数PID精确调温,实现了供水温度的精确控制。通过采用变比例系数快速PID调压和模糊自适应PID调温的控制策略,解决了供气系统压力和温度耦合及温度大滞后的问题,实现了供气压力和温度的精确控制。试验结果表明,控制方法有效,喷雾系统性能达到技术指标要求。Abstract: Spraying system is the core supporting equipment of the Icing wind tunnel, which is mainly used for simulating aerial environment. The investigation for the precision control method of pressure and temperature was developed, according to the complicated structure and high control accuracy of spraying system. The problem of spray rake pressure inconsistent and mutual coupling were solved, by giving pumps rotating speed, presetting inlet and outlet regulating values opening ratio, and feedback controlling outlet regulating values. Base on which, the high accuracy and wide range control of water pressure were achieved at last. Accurate water temperature control was gained through circular calefaction in seedtime and accurate temperature adjustment using variable parameter PID in test time. The problems of air pressure and temperature mutual coupling and the temperature change time delay were solved, through the method of fuzzy adaptive PID for temperature control and variable proportion coefficient PID for pressure control, and then realized the accurate air supply pressure and temperature control. Experimental results proved that the control algorithm is feasibility, and the performance of the spraying system can satisfy the technical requirements.
-
Key words:
- wind tunnel /
- spraying /
- water supply /
- air supply /
- control
-
表 1 供水供气压力控制精度要求
Table 1. Requisite pressure accuracy for water and air supply
Water pressure range/MPa Requisite accuracy/% Air pressure range/MPa Requisite accuracy/% 0.01~0.5 5 0.01~0.5 3 0.5~1.5 3 0.5~1.5 2 表 2 水泵转速设置
Table 2. Setting rotating speed of bump
Water pressure range/MPa Rotating speed of bump/(r·min-1) Number of bump 0.01~0.1 1200 1 0.1~0.2 1500 1 0.2~0.3 2000 1 0.3~0.5 2500 1 0.5~0.8 1500 2 0.8~1.2 2000 2 1.2~1.5 2500 2 -
[1] 战培国.结冰风洞研究综述[J].实验流体力学, 2007, 21(3): 92-96. http://www.syltlx.com/CN/abstract/abstract9577.shtmlZhan P G. A review of icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 92-96. http://www.syltlx.com/CN/abstract/abstract9577.shtml [2] 李树成, 王帆, 徐银丽, 等.基于AMESim的某风洞喷雾供水系统设计与研究[J].机床与液压, 2010, 38(5): 122-124. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=...Li S C, Wang F, Xu Y L, et al. Research on design of wind tunnel spraying water supply system based on AMESim[J]. Machine Tool & Hydraulics, 2010, 38(5): 122-124. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=... [3] 明赐东.调节阀计算选型使用[M].成都:成都科技大学出版社, 1999.Ming C D. Regulating valve selection calculation using[M]. Chengdu: Chengdu University of Science and Technology Press, 1999. [4] 曹文斌. 调节阀流量特性及动态性能研究[D]. 兰州: 兰州理工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10731-1013252898.htmCao W B. Research of the flow performance and dynamic characteristics in control valve[D]. Lanzhou: Lanzhou University of Technology, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10731-1013252898.htm [5] 王杰. 电动调节阀动态特性与控制研究[D]. 济南: 山东大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10422-1013223161.htmWang J. Study on dynamic characteristic and control of electric control valve[D]. Jinan: Shandong University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10422-1013223161.htm [6] 卫红.调节阀流量特性变化对调节精度的影响[J].中国氯碱, 2014, 7(5): 44-46. http://www.cqvip.com/QK/90909A/201407/662012174.htmlWei H. Research of flow characteristics change for control precision effect[J]. China Chlor-Alkali, 2014, 7(5): 44-46. http://www.cqvip.com/QK/90909A/201407/662012174.html [7] 王志. 多变量PID控制方法的研究和应用[D]. 北京: 北京化工大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10010-2007161840.htmWang Z. Research and application of PID control methods in multivariable system[D]. Beijing: Beijing University of Chemical Technology, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10010-2007161840.htm [8] 刘永芳, 冯良, 鲁泓, 等.冷凝式燃气热水器水温变参数PID控制方法[J].煤气与热力, 2013, 33(10): 13-15. http://www.docin.com/p-1047488211.htmlLiu Y F, Feng L, Lu H, et al. Control method of variable parameter PID for water temperature in condensing gas water heater[J]. GAS & HEAT, 2013, 33(10): 13-15. http://www.docin.com/p-1047488211.html [9] 卢贤良, 郑德腾.一种新型PID算法在车用交流发电机测试系统中的应用[J].电工技术杂志, 1999, 9(5): 16-17. doi: 10.3969/j.issn.1672-9560.1999.05.004Lu X L, Zheng D T. A new kind of PID controller for vehicle AC generator testing system[J]. Electrician Technology Journal, 1999, 9(5): 16-17. doi: 10.3969/j.issn.1672-9560.1999.05.004 [10] 田效伍, 王鲜芳, 张春梅.变比例系数快速PID调节法[J].河南机电高等专科学校学报, 2012, 10(3): 42-43. http://www.academia.edu/12511554/PID_控制算法控制算法Tian X W, Wang X F, Zhang C M. Method of the fast PID control with changed scale coefficient[J]. Journal of Henan Mechanical and Electrical Engineering College, 2012, 10(3): 42-43. http://www.academia.edu/12511554/PID_控制算法控制算法 [11] 田渊. 基于模糊PID的循环水温度控制系统研究[D]. 成都: 电子科技大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10614-1013328934.htmTian Y. The circulating water temperature control system based on fuzzy PID[D]. ChengDu: School of Mechatronics Engineering, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10614-1013328934.htm [12] 郭瑞青, 程启明, 杜许峰, 等.大时滞过程的控制方法[J].上海电力学院学报, 2008, 24(3): 248-253. http://d.wanfangdata.com.cn/Thesis/Y1385151Guo R Q, Cheng Q M, Du X F, et al. The overview of the control methods on large time delay systems[J]. Journal of Shanghai University of Electric Power, 2008, 24(3): 248-253. http://d.wanfangdata.com.cn/Thesis/Y1385151 [13] 张峻颖. 时滞对象的控制方法研究及其在电加热器温控系统中的应用[D]. 杭州: 浙江工业大学, 2003. http://cdmd.cnki.com.cn/Article/CDMD-10337-2003096353.htmZhang J Y. The research of control methods for time-delay systems and the application in electrical heating[D]. Hangzhou: Zhejiang University of Technology, 2003. http://cdmd.cnki.com.cn/Article/CDMD-10337-2003096353.htm [14] 易贤, 桂业伟, 肖春华, 等.结冰风洞液态水含量测量方法研究[J].科技导报, 2009, 27(21): 81-90. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=...Yi X, Gui Y W, Xiao C H, et al. A method of liquid water content measurement in icing wind tunnel[J]. Review Science & Technology, 2009, 27(21): 81-90. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=... [15] 符澄, 彭强, 张海洋, 等.结冰风洞环境对喷嘴雾化特性的影响初步研究[J].实验流体力学, 2015, 29(3): 30-34. http://www.syltlx.com/CN/abstract/abstract10840.shtmlFu C, Peng Q, Zhang H Y. Wu S H. Preliminary research on spray nozzle atomization characteristics in Icing wind tunnel environment[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 30-34. http://www.syltlx.com/CN/abstract/abstract10840.shtml [16] 符澄, 彭强, 张海洋, 等.结冰风洞喷嘴雾化特性研究[J].实验流体力学, 2015, 29(2): 32-36. http://www.syltlx.com/CN/abstract/abstract10823.shtmlFu C, Peng Q, Zhang H Y, et al. The atomization characteristics research for spray nozzle of Icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2): 32-36. http://www.syltlx.com/CN/abstract/abstract10823.shtml