Development and application of the measurement system for thrust vectoring tests at 2.4m×2.4m transonic wind tunnel
-
摘要: 推力矢量控制(TVC)技术能实现飞行器过失速机动飞行,使飞行器突破失速障、增强机敏性,在改善起降性能、巡航性能等方面具有重要作用。在2.4m跨声速风洞推力矢量试验中,采用3台六分量应变天平和2个独立的空气桥系统来实现飞机模型气动力和2个尾喷管转向喷流推进特性同时分别测量。推力矢量试验模型扁平外形使测力系统的布局及结构设计受到较大限制,狭小的模型内部需布置3台六分量天平、2套独立的空气桥系统及管路、支撑系统、压力测量系统等,采用传统方式无法完成如此复杂的系统设计,更无法完成高压条件下空气桥系统与测力天平的匹配设计。在测力系统的研制中,采用了一体化设计理念和刚度匹配设计方法,结合ANSYS有限元软件较好地解决了系统各部件的布局及结构优化等问题。天平校准结果和风洞试验结果证明测力系统满足推力矢量试验需求。Abstract: The thrust vectoring control (TVC) technology enables aircraft to fly in post-stall maneuver, which is very important for breaking through obstacle stall, enhancing mobility and improving take-off/landing and cruise performance. For TVC test at 2.4m×2.4m transonic wind tunnel, three six-component strain-gauge balances and two separate air systems are applied to respectively measure the performance of the whole model and nozzles at the same time. The thrust vector test model is flat, so that the layout and structure design of the measurement system is constrained. In the small internal model, it is very difficult to set up three six-component balances, two separate air bridge systems and pipeline, a supporting system, a pressure measurement system and so on. The complex system design cannot be realized by traditional methods and neither can the matching design of the air bridge system and the force balance under the condition of high pressure be accomplished. In the development of the measurement system, the integrated design concept and the stiffness matching design method are adopted. Combined with ANSYS finite element software, the layout and structure optimization of each component of the system have been solved. The results of balance calibration and wind tunnel test prove that the measurement system meets the requirement of thrust vector test.
-
Key words:
- thrust vector /
- wind tunnel balance /
- finite element /
- calibration
-
表 1 天平设计载荷
Table 1. Design load of balance
名称 Y
/NMz
/(N·m)X
/NMx
/(N·m)Z
/NMy
/(N·m)全机天平 15000 1000 1200 480 2200 500 推力天平 1200 200 800 50 1200 200 表 2 全机天平计算应变
Table 2. The calculated strain of primary balance
名称 Y Mz X Mx Z My 贴片处应变(×10-6) 445 480 390 270 170 340 表 3 推力天平的计算应变
Table 3. The calculated strain of thrust balance
应变(×10-6) Y Mz X Mx Z My 推力天平 205 560 270 175 207 558 推力天平带空气桥系统 0MPa 204 440 268 141 204 478 1MPa 198 400 267 140 203 442 2MPa 191 370 266 137 201 402 表 4 全机天平校准结果
Table 4. Calibration result of the primary balance
Y Mz X Mx Z My 校准不确定度/% 0.08 0.09 0.11 0.15 0.10 0.12 表 5 推力天平1校准结果
Table 5. Calibration result of the thrust balance 1
校准不确定度/% Y Mz X Mx Z My 推力天平 0.03 0.02 0.06 0.20 0.05 0.05 推力天平带空气桥系统 0MPa 0.30 0.20 0.10 0.90 0.14 0.19 1MPa 0.35 0.30 0.11 1.00 0.20 0.24 2MPa 0.50 0.45 0.11 1.50 0.30 0.30 60g/s 0.32 0.16 0.12 0.91 0.20 0.21 100g/s 0.50 0.22 0.20 1.00 0.23 0.30 200g/s 0.60 0.33 0.27 0.89 0.30 0.34 -
[1] 曲东才.推力矢量控制技术发展及关键技术分析[J].航空科学技术, 2002, (3):30-33. http://www.cqvip.com/QK/97819X/200203/6318569.htmlQu D C. Development for thrust vector control technology and analysis for critical technology[J]. Acronantical Science and Technology, 2002, (3):30-33. http://www.cqvip.com/QK/97819X/200203/6318569.html [2] 贾毅, 郑芳, 黄浩, 等.低速风洞推力矢量试验技术研究[J].实验流体力学, 2014, 28(6):92-97. http://www.syltlx.com/CN/abstract/abstract10796.shtmlJia Y, Zheng F, Huang H, et al. Research on vectoring thrust test technology in low-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):92-97. http://www.syltlx.com/CN/abstract/abstract10796.shtml [3] Smith C L, Riddle T R. Jet effects testing considerations for the next-generation long-range strike aircraft[R]. AIAA-2008-1621, 2008. doi: 10.2514/6.2008-1621 [4] Crose J, Mack T, Marx D. NASA/MFSC nozzle test bed[R]. AIAA-89-2871, 1989. doi: 10.2514/6.1989-2871 [5] 付尧明, 王强, 额日其太, 等.矢量喷管六分量测力试验台的研制[J].流体力学实验与测量, 2002, 16(1):87-93. http://d.wanfangdata.com.cn/Periodical/ltlxsyycl200201014Fu Y M, Wang Q, Eriqitai, et al. Development of the six-component force-measuring balance for thrust-vectoring nozzle testing[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(1):87-93. http://d.wanfangdata.com.cn/Periodical/ltlxsyycl200201014 [6] 贺伟, 童泽润, 李宏斌.单模块超燃发动机推力测量天平研制[J].航空动力学报, 2010, 25(10):2285-2289. http://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201402033.htmHe W, Tong Z R, Li H B. Investigation of thrust balance for the single module scramjet[J]. Journal of Aerospace Power, 2010, 25(10):2285-2289. http://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201402033.htm [7] 章荣平, 王勋年, 黄勇, 等.低速风洞全模TPS试验空气桥的设计与优化[J].实验流体力学, 2012, 26(6):48-52. http://www.syltlx.com/CN/abstract/abstract10476.shtmlZhang R P, Wang X N, Huang Y, et al. Design and optimization of the air bridge for low speed full-span TPS test[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):48-52. http://www.syltlx.com/CN/abstract/abstract10476.shtml [8] 王超, 林俊.天平与波纹管系统结构设计与有限元分析[J].实验流体力学, 2013, 27(3):77-92. http://www.syltlx.com/CN/abstract/abstract10437.shtmlWang C, Lin J. Structure design and finite element analysis on system of balance and bellows[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3):77-92. http://www.syltlx.com/CN/abstract/abstract10437.shtml [9] 刘岩, 段玫, 张道伟.波纹管应力分析研究进展[J].管道技术与设备, 2006, (4):31-33. http://www.cqvip.com/QK/97879X/200604/22690496.htmlLiu Y, Duan M, Zhang D W. Development of stress analysis of bellows[J]. Pipeline Technique and Equipment, 2006, (4):31-33. http://www.cqvip.com/QK/97879X/200604/22690496.html [10] 哈力旦·木沙, 买买提依明·艾尼.机械密封焊接金属波纹管膜片结构的有限元分析[J].新疆大学学报(自然科学版), 2007, 24(4):490-494. http://www.doc88.com/p-340625080328.htmlHalidan Musha, Mamaitiming Aini. FEM analysis of metal welded bellow wave of mechanical seal[J]. Journal of Xinjiang University (Natural Science Edition), 2007, 24(4):490-494. http://www.doc88.com/p-340625080328.html [11] 刘高计, 谌满荣, 于卫青.风洞应变天平优化设计方法研究[J].弹箭与制导学报, 2006, 26(2):94-97. http://d.wanfangdata.com.cn/Periodical/djyzdxb200602033Liu G J, Chen M R, Yu W Q. The research of optimum design method of strain-gauge balance in wind-tunnel[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(2):94-97. http://d.wanfangdata.com.cn/Periodical/djyzdxb200602033 [12] Braman K B, Schweikhard W G, Yechout T R. Thrust modeling:A simplified in-flight thrust and airflow prediction technique for flight test performance measurements[R]. AIAA-83-2751, 1983. https://www.researchgate.net/publication/268462374_Thrust_modeling_-_A_simplified_in-flight_thrust_and_airflow_prediction_technique_for_flight_test_performance_measurements [13] Wong K C. Derivation of the data reduction equations for the calibration of the six-component thrust stand in the CE-22 advanced nozzle test facility[R]. NASA/TM 2003-212326. https://www.researchgate.net/publication/24293133_Derivation_of_the_Data_Reduction_Equations_for_the_Calibration_of_the_Six-Component_Thrust_Stand_in_the_CE-22_Advanced_Nozzle_Test_Facility [14] Booth D, Ulbrich N. Calibration and data analysis of the MC-130 air balance[C]. 8th International Symposium on Strain-Gauge Balances, Ameron Hotel Flora, Lucerne, Switzerland, 2012. doi: 10.2514/6.2013-545