留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速混合层中PIV粒子的湍流变动作用研究

陈小虎 陈方 刘洪 沙莎 逯雪铃 张庆兵

陈小虎, 陈方, 刘洪, 沙莎, 逯雪铃, 张庆兵. 超声速混合层中PIV粒子的湍流变动作用研究[J]. 机械工程学报, 2017, 31(6): 8-14, 21. doi: 10.11729/syltlx20160144
引用本文: 陈小虎, 陈方, 刘洪, 沙莎, 逯雪铃, 张庆兵. 超声速混合层中PIV粒子的湍流变动作用研究[J]. 机械工程学报, 2017, 31(6): 8-14, 21. doi: 10.11729/syltlx20160144
Chen Xiaohu, Chen Fang, Liu Hong, Sha Sha, Lu Xueling, Zhang Qingbing. Investigation of turbulence modification by PIV tracer particles in a supersonic mixing layer[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 31(6): 8-14, 21. doi: 10.11729/syltlx20160144
Citation: Chen Xiaohu, Chen Fang, Liu Hong, Sha Sha, Lu Xueling, Zhang Qingbing. Investigation of turbulence modification by PIV tracer particles in a supersonic mixing layer[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 31(6): 8-14, 21. doi: 10.11729/syltlx20160144

超声速混合层中PIV粒子的湍流变动作用研究

doi: 10.11729/syltlx20160144
基金项目: 

国家自然科学基金 11672183

详细信息
    作者简介:

    陈小虎(1990-), 男, 河南周口人, 硕士研究生。研究方向:空气动力学和两相流。通信地址:上海市闵行东川路800号, 上海交通大学航空航天学院(200240)。E-mail:chenxiaohu@sjtu.edu.cn

    通讯作者:

    陈方, E-mail: fangchen@sjtu.edu.cn

  • 中图分类号: V211.1+7;O359+.2

Investigation of turbulence modification by PIV tracer particles in a supersonic mixing layer

  • 摘要: 对二维超声速气固两相混合层进行双向耦合,研究了粒子图像测速技术(PIV)中示踪粒子对超声速混合层的湍流变动作用。超声速气固两相混合层的气相采用大涡模拟,离散相采用拉格朗日颗粒轨道模型求解。结果表明:与无负载示踪粒子时的超声速混合层相比,小Stokes数示踪粒子在超声速混合层中的布撒减弱了流向湍流,而强化了法向湍流,使雷诺应力峰值增大了9.68%;大Stokes数示踪粒子对混合层的湍流脉动起到了一定的削弱作用,最大雷诺应力值只有无负载时的41.74%。大质量载荷时,大量示踪粒子的运动尾迹抹平了部分法向速度脉动,使最大法向速度脉动只有无负载粒子时的38.63%;中等质量载荷时,超声速混合层的法向速度脉动和雷诺应力峰值与无负载粒子时相近;而小质量载荷时,超声速混合层中心线及其附近的法向速度脉动得到较小的增强,而最大流向速度脉动却被削弱了19.29%。小Stokes数和中等质量载荷示踪粒子对原始无负载粒子时的流场影响相对较小,研究结论对高速流动PIV测试有着重要的参考价值。

     

  • 图  无量纲流向时均和脉动速度分布

    Figure  1.  Normalized streamwise mean and root mean square velocity distribution

    图  不同St数的气固双向耦合下的气相涡量场和粒子分布

    Figure  2.  Gas vorticity contours and particles distribution of gas-solid two-way coupled with different St numbers

    图  无量纲时均流向速度和温度分布

    Figure  3.  Normalized mean streamwise velocity and temperature distribution

    图  无量纲流向和法向脉动速度分布

    Figure  4.  Normalized root mean square streamwise and transverse velocity distribution

    图  无量纲雷诺应力分布

    Figure  5.  Normalized Reynolds stress distribution

    图  不同Φm气固双向耦合下的气相涡量场和粒子运动

    Figure  6.  Gas vorticity contours and particles motion of gas-solid two-way coupled with different Φm

    图  无量纲时均流向速度和温度分布

    Figure  7.  Normalized mean streamwise velocity and temperature distribution

    图  无量纲流向脉动速度分布

    Figure  8.  Normalized root mean square streamwise velocity

    图  无量纲法向脉动速度分布

    Figure  9.  Normalized root mean square transverse velocity

    图  10  无量纲雷诺应力分布

    Figure  10.  Normalized Reynolds stress distribution

    表  1  计算参数

    Table  1.   Computational parameters

    Case U/(m·s-1) p/kPa Ma Mac ρ/(kg·m-3)
    1 517
    408
    46 000 2.02
    1.39
    0.20 1.00
    0.76
    下载: 导出CSV
  • [1] Elsinga G E, Van Oudheusden B W, Scarano F. Evaluation of aero-optical distortion effects in PIV[J]. Experiments in Fluids, 2005, 39(2):246-256. doi: 10.1007/s00348-005-1002-8
    [2] Gore R A, Crowe C T. Effect of particle size on modulating turbulent intensity[J]. Multiphase Flow, 1989, 15:297-285. https://www.sciencedirect.com/science/article/pii/0301932289900761
    [3] Kenning V M, Crowe C T. On the effect of particles on carrier phase turbulence in gas-particle flows[J]. International Journal of Multiphase Flow, 1997, 23(2):403-408. doi: 10.1016/S0301-9322(96)00070-5
    [4] Crowe C T. On models for turbulence modulation in fluid-particle flows[J]. International Journal of Multi-phase Flow, 2000, 26(5):719-727. doi: 10.1016/S0301-9322(99)00050-6
    [5] Hetsroni G. Particle-turbulence interaction[J]. Multiphase Flow, 1989, 15:735-746. doi: 10.1016/0301-9322(89)90037-2
    [6] Truesdell G C, Elghobashi S. On the two-way interaction between homogeneous turbulence and dispersed solid particles(Ⅱ):Particle dispersion[J]. Physics of Fluids, 1994, 6(3):1405-1407. doi: 10.1063/1.868254
    [7] Elghobashi S, Truesdell G C. On the two-way interaction between homogeneous turbulence and dispersed solid particles I:Turbulence modification[J]. Physics of Fluids A:Fluid Dynamics (1989-1993), 1993, 5(7):1790-1801. doi: 10.1063/1.858854
    [8] Lain S, Broder D, Sommerfeld M, et al. Modelling hydrodynamics and turbulence in a bubble column using the Euler-Lagrange procedure[J]. International Journal of Multiphase Flow, 2002, 28(8):1381-1407. doi: 10.1016/S0301-9322(02)00028-9
    [9] Lain S, Sommerfeld M. Turbulence modulation in dispersed two-phase flow laden with solids from a La-grangian perspective[J]. International Journal of Heat and Fluid Flow, 2003, 24(4):616-625. doi: 10.1016/S0142-727X(03)00055-9
    [10] Savolainen K, Karvinen R. The effect of particles on gas turbulence in a vertical upward pipe flow[C]. Third International Conference on Multiphase Flow, ICMF, 1998.
    [11] Druzhinin O A. The influence of particle inertia on the two-way coupling and modification of isotropic turbu-lence by microparticles[J]. Physics of Fluids, 2001, 13(12):3738-3755. doi: 10.1063/1.1415735
    [12] Ling W, Chung J N, Troutt T R, et al. Direct numerical simulation of a three-dimensional temporal mixing layer with particle dispersion[J]. Journal of Fluid Mechanics, 1998, 358:61-85. doi: 10.1017/S0022112097008227
    [13] 林建忠, 石兴, 余钊圣.二维气固两相混合层中固粒对流场影响的研究[J].应用数学和力学, 2000, 21(8):771-776. http://www.cqvip.com/QK/95055X/200008/4469590.html

    Lin J Z, Shi X, Yu Z S. Research on the effect of partical of two-dimensional shear flow[J]. Applied Mathematics and Mechanics, 2000, 21(8):771-776. http://www.cqvip.com/QK/95055X/200008/4469590.html
    [14] 林建忠, 石兴.气固两相混合层流场双向耦合的数值研究[J].工程热物理学报, 2001, 22(4):496-499. http://www.cqvip.com/QK/90922X/2001004/5386585.html

    Lin J Z, Shi X. Numerical study on the gas-solid two-phase mixing layer by two-way coupling model[J]. Journal of Engineering Thermophysics, 2001, 22(4):496-499. http://www.cqvip.com/QK/90922X/2001004/5386585.html
    [15] 樊建人, 罗坤, 金晗辉, 等.直接数值模拟三维气固两相混合层中颗粒与流体的双向耦合[J].中国电机工程学报, 2003, 23(4):153-157. http://d.wanfangdata.com.cn/Periodical/zgdjgcxb200304031

    Fan J R, Luo K, Jin H H, et al. Direct numerical simulation of the two-way coupling effects between particles and fluid in the three-dimensional partical-laden mixing layer[J]. Proceedings of the CSEE, 2003, 23(4):153-157. http://d.wanfangdata.com.cn/Periodical/zgdjgcxb200304031
    [16] 王兵, 刘毅, 王希麟.颗粒粒径和气载比改变时湍流调制的变化[J].航空动力学报, 2009, 24(8):1818-1823. http://www.cqvip.com/QK/91591X/200908/1001031803.html

    Wang B, Liu Y, Wang X L. Turbulence modulation caused by change of particle size and particle mass loading ratio[J]. Journal of Aerospace Power, 2009, 24(8):1818-1823. http://www.cqvip.com/QK/91591X/200908/1001031803.html
    [17] 刘伟, 万国新, 陈景兵, 等.可压缩气固混合层中离散相与连续相的相互作用研究[J].计算力学学报, 2009, 26(1):8-14. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsjg200901002&dbname=CJFD&dbcode=CJFQ

    Liu W, Wan G X, Chen J B, et al. Study on the interaction between the continuous and the dispersed phase in compressible gas-solid mixing layer[J]. Chinese Journal of Computation Mechanics, 2009, 26(1):8-14. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsjg200901002&dbname=CJFD&dbcode=CJFQ
    [18] 刘伟, 陈景兵, 万国新, 等.空间模式下可压缩气固两相气固混合层流动特性研究[J].应用力学学报, 2010, 27(2):8-14. http://www.cqvip.com/QK/91535X/201002/34468817.html

    Liu W, Chen J B, Wan G X, et al. Characteristics of the flow of spatial developing gas-solid mixing layer[J]. Chinese Journal of Applied Mechanics, 2010, 27(2):8-14. http://www.cqvip.com/QK/91535X/201002/34468817.html
    [19] Yoshizawa A, Horiuti K. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows[J]. Journal of the Physical Society of Japan, 1985, 54(8):2834-2839. doi: 10.1143/JPSJ.54.2834
    [20] Goebel S G, Dutton J C, Krier H, et al. Mean and turbu-lent velocity measurements of supersonic mixing layers[J]. Experiments in Fluids, 1990, 8:263-272. doi: 10.1007/BF00187228
    [21] 任兆新, 王兵, 张会强, 等.超音速拟序旋涡中颗粒的弥散[J].工程热物理学报, 2015, 36(9):1957-1960. http://www.cqvip.com/QK/90922X/201509/666052294.html

    Ren Z X, Wang B, Zhang H Q, et al. Dispersion of particles in the supersonic coherent vortex[J]. Journal of Engineering Thermophysics, 2015, 36(9):1957-1960. http://www.cqvip.com/QK/90922X/201509/666052294.html
    [22] Rong Z, Liu H, Chen F. Development and application of PIV in supersonic flows[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition. American Institute of Physics, 2011. doi: 10.1063/1.3651872
    [23] 张亚, 陈方, 刘洪, 等.高速流动中PIV示踪粒子松弛特性研究[J].实验流体力学, 2013, 27(6):70-75. http://www.syltlx.com/CN/abstract/abstract10417.shtml

    Zhang Y, Chen F, Liu H, et al. Research on the relaxation characteristics of PIV tracer particles in supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6):70-75. http://www.syltlx.com/CN/abstract/abstract10417.shtml
    [24] 刘洪, 陈方, 励孝杰, 等.高速复杂流动PIV技术实践与挑战[J].实验流体力学, 2016, 30(1):28-42. http://syltlx.cars.org.cn/CN/abstract/abstract10899.shtml

    Liu H, Chen F, Li X J, et al. Practices and challenges on PIV technology in high speed complex flows[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1):28-42. http://syltlx.cars.org.cn/CN/abstract/abstract10899.shtml
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  226
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-20
  • 修回日期:  2016-10-30

目录

    /

    返回文章
    返回