Research on metric thrust jet-effects testing methodology in high-speed wind tunnel
-
摘要: 详细介绍了FL-3风洞一体形式的喷流影响风洞试验技术,该技术区别于分离形式的喷流影响试验技术,利用波纹管实现了飞行器模型与喷管的一体化设计。天平同时测量模型外部气动力和喷管推力,避免了分离形式喷流影响试验技术存在的喷管几何不完全相似、模型与喷管易碰触、腔压难以准确修正等问题。对一体形式喷流影响试验技术的相似参数、试验原理、波纹管技术等进行了系统介绍,地面调试及风洞试验表明:一体形式的喷流影响试验技术可以获得不同落压比和不同矢量喷流对飞行器的喷流影响量,在经过进一步细节优化后,将形成成熟的试验能力,并依据该技术可以发展喷管性能风洞试验技术、一体形式的推力矢量风洞试验技术等。Abstract: The metric thrust jet-effects testing methodology is introduced in FL-3 wind tunnel. Different from the sleeve type jet-effects testing methodology, the airframe is integrated with the nozzle by using the bellows system, and the balance can measure simultaneously the aerodynamic characteristics and the nozzle thrust. The problems such as nozzle geometric incomplete similarity, touching possibility between the model and the nozzle, imprecise modification of the pressure in the model cavity, etc, which exist in the sleeve type jet-effects testing methodology can be avoided by using the metric thrust methodology. The similarity theory, testing methodology and bellows technology of the metric thrust jet-effects testing are discussed in detail in this paper. The experimental results show that jet-effects under different test conditions including different nozzle pressure ratios and vectoring jets can be gained by the metric thrust jet-effects testing methodology. After further improvements of some details, the test capability can be enhanced, and the nozzle performance wind tunnel testing methodology and the thrust vector wind tunnel testing methodology can also be developed based on this methodology.
-
Key words:
- jet-effects /
- metric thrust /
- sleeve type /
- bellows system /
- thrust vectoring
-
表 1 AEDC 3种典型喷流试验技术
Table 1. Typical jet-effects testing methodology at AEDC
技术形式 天平 支撑形式 阻力重复性 分离形式 杆式或环式 腹撑或翼尖 0.0005 一体形式 杆式或环式 腹撑或翼尖 0.0005 压力积分 无天平 翼尖支撑 0.0001 表 2 光天平及带波纹管天平精准度
Table 2. Balance calibration results
项目 Y
/NMz
/(N·m)X
/N设计载荷 4200 260 800 加载载荷 4000 240 800 综合加载重复性误差/% 合格指标 0.20 0.20 0.30 先进指标 0.06 0.06 0.10 光天平 0.034 0.041 0.07 波纹管天平 0.07 0.15 0.08 综合加载准度误差/% 合格指标 0.40 0.40 0.50 先进指标 0.10 0.10 0.20 光天平 0.15 0.37 0.43 波纹管天平 0.18 0.41 0.48 表 3 光天平与及带波纹管天平主系数差异对比
Table 3. Main coefficient difference between two balances
主系数 Y
/NMz
/(N·m)X
/N光天平 -2.0530 -0.0730 -0.1433 带波纹管天平 -2.0750 -0.0740 -0.1434 绝对差异 0.0220 -0.0010 0.0001 相对差异/% 1.1 1.4 0.1 表 4 测力系统的重复性精度
Table 4. Uncertainty of the balance system
天平元 Y/N Mz/(N·m) X/N 喷管载荷 9.97 -0.23 -203.22 重复性 1.51 0.14 0.67 表 5 不同落压比下喷管推力(阻力方向为正)
Table 5. Nozzle thrust at difference NPRs
喷管类型 喷流总压
/kPa环境压力
/kPa落压比 推力
/N0° 135.02 86.0 1.57 -49.23 221.02 86.0 2.57 -122.92 307.02 86.0 3.57 -198.37 319.92 86.0 3.72 -209.84 10° 221.02 86.0 2.57 -120.06 20° 221.02 86.0 2.57 -114.99 -
[1] Staff of the Propulsion Aerodynamics Branch. A user's guide to the langley 16-foot transonic tunnel complex[M]. NASA Technical Memorandum 102750, 1990. [2] Capone F J, Bangert L S, Asbury S C. The NASA Langley 16-foot transonic tunnel historical overview, facility description, calibration, flow characteristics, and test capabilities[R]. NASA Technical Paper 3521, 1995. http://www.researchgate.net/publication/2301696_Historical_Overview_Facility_Description_Calibration_Flow_Characteristics_and_Test_Capabilities [3] Smith C L, Bergmann J C, Riddle T R. Current airframe propulsion integration testing techniques at AEDC[R]. AIAA-2004-6819, 2004. doi: 10.2514/6.2004-6819 [4] Pozniak O M, Haines A B. Afterbody drag measurement at transonic speeds on a series of twin and single jet afterbodies terminating at the jet-exit[R]. NASA-CP-1266, London, 1973. [5] Lucas E J. Evaluation of wind tunnel nozzle afterbody test techniques utilizing a modern twin engine fighter geometry at Mach numbers from 0.6 to 1.2[R]. AEDC-TR-79-63, 1980. http://www.researchgate.net/publication/235073106_Evaluation_of_Wind_Tunnel_Nozzle_Afterbody_Test_Techniques_Utilizing_a_Modern_Twin_Engine_Fighter_Geometry_at_Mach_Numbers_from_0.6_to_1.2 [6] Leavitt L D. Effect of empennage location on twin-engine afterbody/nozzle aerodynamic characteristics at mach numbers from 0.6 to 1.2[R]. NASA Technical Paper 2116, 1983. https://www.researchgate.net/publication/24385156_Effect_of_empennage_location_on_twin-engine_afterbody-nozzle_aerodynamic_characteristics_at_Mach_Numbers_from_06_to_12 [7] Wing D J. Afterbody/nozzle pressure distributions of a twin-tail twin-engine fighter with axisymmetric nozzles at Mach numbers from 0.6 to 1.2[R]. NASA Technical Paper 3509, 1995. https://www.researchgate.net/publication/24315340_Afterbodynozzle_pressure_distributions_of_a_twin-tail_twin-engine_fighter_with_axisymmetric_nozzles_at_Mach_numbers_from_06_to_12 [8] McWaters M A. F-35 conventional mode jet-effects testing methodology[R]. AIAA-2015-2404, 2015. doi: 10.2514/6.2015-2404 [9] Smith C L, Riddle T R. Jet effects testing considerations for the next-generation long-range strike aircraft[R]. AIAA-2008-1621, 2008. doi: 10.2514/6.2008-1621 [10] 高静, 李聪, 杨勇, 等.低速风洞推力矢量试验背撑干扰特性试验研究[J].实验流体力学, 2005, 19(3):10-14. http://www.syltlx.com/CN/abstract/abstract9422.shtmlGao J, Li C, Yang Y, et al. Research of dorsal support interference in low speed wind tunnel thrustvector test[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3):10-14. http://www.syltlx.com/CN/abstract/abstract9422.shtml [11] 贾毅, 郑芳, 黄浩, 等.低速风洞推力矢量试验技术研究[J].实验流体力学, 2014, 28(6):92-97. http://www.syltlx.com/CN/abstract/abstract10796.shtmlJia Y, Zheng F, Huang H, et al. Research on vectoring thrust test technology in low-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):92-97. http://www.syltlx.com/CN/abstract/abstract10796.shtml [12] 章荣平, 王勋年, 黄勇, 等.低速风洞全模TPS试验空气桥的设计与优化[J].实验流体力学, 2012, 26(6):48-52. http://syltlx.cars.org.cn/CN/article/searchArticleResult.do?searchFlag=secondZhang R P, Wang X N, Huang Y, et al. Design and optimization of the air bridge for low speed full-span TPS test[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):48-52. http://syltlx.cars.org.cn/CN/article/searchArticleResult.do?searchFlag=second [13] Becle J P, Girard D. Development of strain gage balances with air flow-through system for ONERA wind tunnels[C]. Seventy-first Simi-annual S T A Meeting, 1989.