Experimental investigation on the effects of vortex generator on corner separation in a high-load compressor cascade
-
摘要: 涡流发生器能有效控制叶栅通道内的流动分离。为探明涡流发生器对高负荷压气机叶栅角区分离的控制效果,设计了不同周向位置的涡流发生器并进行实验。实验结果表明:涡流发生器通过其产生的尾涡改变通道内的旋涡结构,加强端壁区的低能流体与主流的掺混,抑制角区分离的形成进而达到了改善流动的效果。相对于原型叶栅,在-3°~3°迎角下加入涡流发生器后损失系数降低了5%~14%,气流转折角提高2.49°~3.15°。相对于方案A,涡流发生器远离吸力面0.15倍栅距时,角涡强度增强,气动性能下降;反之,接近吸力面0.15倍栅距时会增加角区额外损失,其流动控制效果较差。Abstract: The vortex generator could effectively reduce corner separation in the compressor cascade. To assess the flow control effects, schemes with different vortex generator's circumference positions were proposed and experimental investigations were performed. The results show that the vortex generator changes the vortices' structure by generating a trailing vortex, which enhances the mixing of the end-wall low momentum flow with the main flow and suppresses the corner separation. After application of VG scheme A, the averaged pressure loss coefficient is reduced by 5%~14% and the averaged flow turning angle increases 2.49°~3.15° with the incidence angle from -3° to 3°. Compared with VG scheme A, if the vortex generator gets 0.15 pitch length farther away from the suction surface then the corner vortex is enhanced and the aerodynamic performance is unsatisfactory; while additional corner loss can emerge and the control effect gets weakened if the vortex generator gets 0.15 pitch length closer to the suction surface.
-
表 1 叶栅几何参数
Table 1. Geometry parameters of the cascade
Parameters Value Chord length(C)/mm 91 Blade height(L)/mm 150 Pitch(S)/mm 45 Solidity(τ=C/S) 2.02 Aspect ratio(AR=L/C) 1.65 Outlet angle(β2k)/(°) 96.27 Stagger angle(γ)/(°) 25 Camber angle(θ)/(°) 62.81 表 2 原型叶栅和方案A流场参数对比
Table 2. Comparision of flow parameters between baseline and config A
Config Parameters i=-3° i=0° i=3° Baseline Loss 0.365 0.436 0.561 Angle 52.86° 55.16° 57.39° A Loss -14.0% -8.1% -5.0% Angle +2.63° +2.49° +3.15° 表 3 总压损失系数对比
Table 3. Relative magnitude of flow loss coefficient
Config i=-3° i=0° i=3° A 0.341 0.401 0.533 B +26.7% +9.5% +1.1% C +10.8% +9.4% +1.5% 表 4 气流转折角对比
Table 4. Relative magnitude of flow turning angle
Config i=-3° i=0° i=3° A 55.50° 57.65° 60.53° B -0.56° -1.85° -3.03° C -1.17° -1.48° -1.87° -
[1] 刘大响, 程荣辉.世界航空动力技术的现状及发展动向[J].北京航空航天大学学报, 2002, 28(5):490-496. http://d.wanfangdata.com.cn/Periodical_bjhkhtdxxb200205002.aspxLiu D X, Cheng R H. Current status and development direction of aircraft power technology in the world[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(5):490-496. http://d.wanfangdata.com.cn/Periodical_bjhkhtdxxb200205002.aspx [2] Wennerstrom A J. Highly loaded axial flow compressors:history and current developments[J]. Journal of Turbomachinery, 1990, 112(4):567-578. doi: 10.1115/1.2927695 [3] Evans S, Hodson H, Hynes T, et al. Flow control in a compressor cascade at high incidence[J]. Journal of Propulsion & Power, 2010, 26(4):828-836. doi: 10.2514/1.48054 [4] Kerrebrock J L, Reijnen D P, Ziminsky W S. Aspirated compressor[R]. ASME GT1997-525, 1997. [5] Evans S, Hodson H, Hynes T, et al. Flow control in a compressor cascade at high incidence[J]. Journal of Propulsion & Power, 2010, 26(4):828-836. doi: 10.2514/1.48054 [6] Akcayoz E, Vo H D, Mahallati A. Controlling corner stall separation with plasma actuators in a compressor cascade[J]. Journal of Turbomachinery, 2016, 138(8):081008. doi: 10.1115/1.4032675 [7] Li Y H, Wu Y, Zhou M, et al. Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation[J]. Experiments in Fluids, 2010, 48(6):1015-1023. doi: 10.1007/s00348-009-0787-2 [8] Gümmer V, Wenger U, Kau H P. Using sweep and dihedral to control three-dimensional flow in transonic stators of axial compressors[R]. ASME GT2000-0491, 2000. https://www.researchgate.net/publication/245354560_Using_Sweep_and_Dihedral_to_Control_Three-Dimensional_Flow_in_Transonic_Stators_of_Axial_Compressors [9] Seinturier E, Lombard J P, Dumas M, et al. Forced response prediction methodology for the design of HP compressors bladed Disks[R]. ASME GT2004-53372, 2004. https://www.researchgate.net/publication/290493077_Forced_Response_Prediction_Methodology_for_the_Design_of_HP_Compressors_Bladed_Disks [10] Georg KR ger, Christian Vo, Eberhard Nicke. Theory and application of axisymmetric endwall contouring for compressors[R]. ASME GT2011-45624, 2011. https://www.researchgate.net/publication/225024196_Theory_and_Application_of_Axisymmetric_Endwall_Contouring_for_Compressors [11] 吴培根, 王如根, 罗凯, 等.开槽叶片对大转角扩压叶栅性能的影响[J].航空动力学报, 2013, 28(11):2503-2509. http://d.wanfangdata.com.cn/Periodical/hkdlxb201311013Wu P G, Wang R G, Luo K, et al. Effect of slotted blade on performance of high-turning angle compressor cascades[J]. Journal of Aerospace Power, 2013, 28(11):2503-2509. http://d.wanfangdata.com.cn/Periodical/hkdlxb201311013 [12] 王如根, 罗凯, 吴云, 等.一种改进的开槽结构对叶栅性能影响的数值研究[J].空军工程大学学报(自然科学版), 2012, 13(5):1-4, 19. http://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201205002.htmWang R G, Luo K, Wu Y, et al. Numerical research on effect of an improved slot configuration on the flow field characteristics of cascade[J]. Journal of Air Force Engineering University (Natural Science Edition), 2012, 13(5):1-4, 19. http://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201205002.htm [13] 胡加国, 王如根, 李坤, 等.跨声速压气机叶尖开槽射流扩稳策略探究[J].推进技术, 2014, 35(11):1475-1481. doi: 10.13675/j.cnki.tjjs.2014.11.006.htmlHu J G, Wang R G, Li K, et al. Investigation on slot jetting flow method and mechanism of transonic compressor[J]. Journal of Propulsion Technology, 2014, 35(11):1475-1481. doi: 10.13675/j.cnki.tjjs.2014.11.006.html [14] Lin J C. Control of turbulent boundary layer separation using micro-vortex generators[R]. AIAA-1999-3404, 1999. doi: 10.2514/6.1999-3404 [15] Rockenbach R W, Brent J A, Jones B A. Single stage experimental evaluation of compressor blading with slots and vortex generators[R]. NASA CR-72626, 1970. [16] Gammerdinger P M. The effects of low-profile vortex generators on flow in a transonic fan-blade cascade[D]. Monterey:Naval Postgraduate School, 1995. doi: 10.2514/6.1996-250 [17] Chima R V. Computational modeling of vortex generators for turbomachinery[R]. ASME GT2002-30677. https://www.researchgate.net/publication/241831618_Computational_Modeling_of_Vortex_Generators_for_Turbomachinery [18] Pesteil A, Cellier D, Domercq O, et al. CREATE:advanced CFD for HPC performance improvement[R]. ASME GT2010-68844. https://www.researchgate.net/publication/267503629_Create_Advanced_CFD_for_HPC_performance_improvement [19] 吴培根. 高负荷风扇流动失稳及流动控制方法研究[D]. 西安: 空军工程大学, 2014.Wu P G. The research of high-load fan flow separation and flow control schemes[D]. Xi'an:Air Force Engineering University, 2014. [20] 吴培根, 王如根, 郭飞飞, 等.涡流发生器对高负荷扩压叶栅性能影响的机理分析[J].推进技术, 2016, 37(1):49-56. http://d.wanfangdata.com.cn/Periodical/tjjs201601007Wu P G, Wang R G, Guo F F, et al. Mechanism analysis of effects of vortex generator on high-load compressor cascade[J]. Journal of Propulsion Technology, 2016, 37(1):49-56. http://d.wanfangdata.com.cn/Periodical/tjjs201601007 [21] 王如根, 胡加国, 佘超, 等.跨声速压气机转子的二次流旋涡结构[J].推进技术, 2015, 36(4):504-512. http://d.wanfangdata.com.cn/Periodical/tjjs201504004Wang R G, Hu J G, She C. Research on secondary flow vortex structure in transonic compressor rotor[J]. Journal of Propulsion Technology, 2015, 36(4):504-512. http://d.wanfangdata.com.cn/Periodical/tjjs201504004