留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深埋互层岩体地下洞室地震响应数值模拟研究

赵勐 肖明 陈俊涛 杨步云

赵勐, 肖明, 陈俊涛, 杨步云. 深埋互层岩体地下洞室地震响应数值模拟研究[J]. 机械工程学报, 2021, 43(12): 2159-2168. doi: 10.11779/CJGE202112002
引用本文: 赵勐, 肖明, 陈俊涛, 杨步云. 深埋互层岩体地下洞室地震响应数值模拟研究[J]. 机械工程学报, 2021, 43(12): 2159-2168. doi: 10.11779/CJGE202112002
ZHAO Meng, XIAO Ming, CHEN Jun-tao, YANG Bu-yun. Numerical simulation of seismic response of a deeply-buried underground cavern in interbedded rock mass[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 43(12): 2159-2168. doi: 10.11779/CJGE202112002
Citation: ZHAO Meng, XIAO Ming, CHEN Jun-tao, YANG Bu-yun. Numerical simulation of seismic response of a deeply-buried underground cavern in interbedded rock mass[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 43(12): 2159-2168. doi: 10.11779/CJGE202112002

深埋互层岩体地下洞室地震响应数值模拟研究

doi: 10.11779/CJGE202112002
基金项目: 

国家自然科学基金项目 52079097

国家重点基础研究发展计划(“973”计划)项目 2015CB057904

国家自然科学基金项目 51579191

详细信息
    作者简介:

    赵勐(1994— ),男,博士研究生,主要从事地下结构稳定数值分析研究。E-mail:zhaomeng@whu.edu.cn

    通讯作者:

    *通信作者(E-mail:mxiao@whu.edu.cn

  • 中图分类号: TU45

Numerical simulation of seismic response of a deeply-buried underground cavern in interbedded rock mass

  • 摘要: 针对深埋大型地下洞室地震波场特性,考虑近场斜入射地震动的方向性、多面性和非一致性,通过将场地地震反应转化为人工边界上等效荷载实现了深埋地下洞室地震波斜入射。针对地震作用下互层岩体层间的动力相互作用特点,建立考虑层面震动劣化效应和黏结滑移特性的动接触力算法。由此构建地震动斜入射下深埋互层岩体地下洞室地震响应分析方法,将该方法应用于阿扎德帕坦水电站地下厂房地震损伤演化分析中,研究结果表明:斜入射地震动加剧了衬砌结构的位移和应力响应,主要体现在波动幅值上,厂房上部边墙和顶拱损伤破坏程度最大;考虑动接触后,层面附近洞室的地震响应增大,岩层间产生明显的地震劣化现象和剪切滑移破坏,层间错动更加明显,最大错动位移在5.9 cm处趋于稳定;并从横向和纵轴向两个角度归纳总结了互层岩体地下洞室结构的震损特征和破坏模式。

     

  • 图  深埋地下洞室地震动斜入射示意图

    Figure  1.  3D diagram of oblique incident earthquake for a deeply-buried underground cavern

    图  接触模型和点对上动接触力示意图

    Figure  2.  Contact model and dynamic contact force on node pairs

    图  三维有限元模型

    Figure  3.  3D finite element model for underground powerhouse

    图  入射波加速度时程曲线

    Figure  4.  Time-history curves of input wave acceleration

    图  监测点布置

    Figure  5.  Layout of monitoring points

    图  层间接触面相对位移时程曲线

    Figure  6.  Time-history curves of relative displacement of interface

    图  震动劣化系数时程曲线

    Figure  7.  Time-history curves of vibration deterioration coefficient

    图  监测点合位移时程曲线

    Figure  8.  Time-history curves of displacement of monitoring points

    图  监测点峰值位移差

    Figure  9.  Peak values of relative displacements

    图  10  监测点最大主应力时程曲线

    Figure  10.  Time-history curves of maximum principal stress of monitoring points

    图  11  不同工况下衬砌结构损伤系数分布

    Figure  11.  Distribution of damage coefficient of underground structures under different cases

    图  12  不同工况下衬砌结构损伤类型分布

    Figure  12.  Distribution of damage types of underground structures under different cases

    图  13  地下厂房结构破坏模式与数值结果对比

    Figure  13.  Comparison between failure modes and numerical results

    表  1  模型材料力学参数

    Table  1.   Mechanical parameters of model materials

    材料变形模量/GPa泊松比黏聚力/MPa内摩擦角/(°)抗拉强度/MPa
    砂岩8.00.2401.1042.01.95
    非砂岩2.00.3000.3526.00.25
    衬砌28.00.1671.8046.01.27
    接触面1.0030.0
    下载: 导出CSV
  • [1] SHEN Y S, GAO B, YANG X M, et al. Seismic damage mechanism and dynamic deformation characteristic analysis of mountain tunnel after Wenchuan earthquake[J]. Engineering Geology, 2014, 180: 85-98.
    [2] 李小军, 卢滔. 水电站地下厂房洞室群地震反应显式有限元分析[J]. 水力发电学报, 2009, 28(5): 41-46.

    LI Xiao-jun, LU Tao. Explicit finite element analysis of earthquake response for underground caverns of hydropower stations[J]. Journal of Hydroelectric Engineering, 2009, 28(5): 41-46. (in Chinese)
    [3] 杜修力, 陈维, 李亮, 等. 斜入射条件下地下结构时域地震反应分析初探[J]. 震灾防御技术, 2007, 2(3): 290-296.

    DU Xiu-li, CHEN Wei, LI Liang, et al. Preliminary study of time-domain seismic response for underground structures to obliquely incident seismic waves[J]. Technology for Earthquake Disaster Prevention, 2007, 2(3): 290-296. (in Chinese)
    [4] 尤红兵, 赵凤新, 荣棉水. 地震波斜入射时水平层状场地的非线性地震反应[J]. 岩土工程学报, 2009, 31(2): 234-240.

    YOU Hong-bing, ZHAO Feng-xin, RONG Mian-shui. Nonlinear seismic response of horizontal layered site due to inclined wave[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 234-240. (in Chinese)
    [5] 杜修力, 黄景琦, 赵密, 等. SV 波斜入射对岩体隧道洞身段地震响应影响研究[J]. 岩土工程学报, 2014, 36(8): 1400-1406.

    DU Xiu-li, HUANG Jing-qi, ZHAO Mi, et al. Effect of oblique incidence of SV waves on seismic response of portal sections of rock tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1400-1406. (in Chinese)
    [6] 赵宝友, 马震岳, 丁秀丽. 不同地震动输入方向下的大型地下岩体洞室群地震反应分析[J]. 岩石力学与工程学报, 2010, 29(增刊1): 3395-3402.

    ZHAO Bao-you, MA Zhen-yue, DING Xiu-li. Seismic response of a large underground rock cavern groups considering different incident angles of earthquake waves[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3395-3402. (in Chinese)
    [7] 赵密, 欧阳文龙, 黄景琦, 等. P波作用下跨断层隧道轴线地震响应分析[J]. 岩土力学, 2019, 40(9): 3645-3655.

    ZHAO Mi, OUYANG Wen-long, HUANG Jing-qi, et al. Analysis of axis dynamic response of rock tunnels through fault fracture zone under P waves of earthquake[J]. Rock and Soil Mechanics, 2019, 40(9): 3645-3655. (in Chinese)
    [8] 黄景琦, 杜修力, 田志敏, 等. 斜入射SV波对地铁车站地震响应的影响[J]. 工程力学, 2014, 31(9): 81-88, 103.

    HUANG Jing-qi, DU Xiu-li, TIAN Zhi-min, et al. Effect of the oblique incidence of seismic SV waves on the seismic response of subway station structure[J]. Engineering Mechanics, 2014, 31(9): 81-88, 103. (in Chinese)
    [9] 张志国. 地下洞室群地震响应数值分析方法研究[D]. 武汉: 武汉大学, 2012: 76-87.

    ZHANG Zhi-guo. Study on Numerical Simulation Methods for Seismic Response of Underground Cavern Complexes[D]. Wuhan: Wuhan University, 2012: 76-87. (in Chinese)
    [10] KOURETZIS G P, BOUCKOVALAS G D, GANTES C J. 3-D shell analysis of cylindrical underground structures under seismic shear (S) wave action[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(10): 909-921.
    [11] LIU J B, SHARAN S K. Analysis of dynamic contact of cracks in viscoelastic media[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 121(1/2/3/4): 187-200.
    [12] LEE H S, PARK Y J, CHO T F, et al. Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 967-980.
    [13] 刘博, 李海波, 朱小明. 循环剪切荷载作用下岩石节理强度劣化规律试验模拟研究[J]. 岩石力学与工程学报, 2011, 30(10): 2033-2039.

    LIU Bo, LI Hai-bo, ZHU Xiao-ming. Experiment simulation study of strength degradation of rock joints under cyclic shear loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2033-2039. (in Chinese)
    [14] 倪卫达, 唐辉明, 刘晓, 等. 考虑结构面震动劣化的岩质边坡动力稳定分析[J]. 岩石力学与工程学报, 2013, 32(3): 492-500.

    NI Wei-da, TANG Hui-ming, LIU Xiao, et al. Dynamic stability analysis of rock slope considering vibration deterioration of structural planes under seismic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3): 492-500. (in Chinese)
    [15] 刘晶波, 王振宇, 杜修力, 等. 波动问题中的三维时域粘弹性人工边界[J]. 工程力学, 2005, 22(6): 46-51.

    LIU Jing-bo, WANG Zhen-yu, DU Xiu-li, et al. Three- dimensional visco-elastic artificial boundaries in time domain for wave motion problems[J]. Engineering Mechanics, 2005, 22(6): 46-51. (in Chinese)
    [16] 杜修力. 工程波动理论与方法[M]. 北京: 科学出版社, 2009: 15-21.

    DU Xiu-li. Theories and Methods of Wave Motion for Engineering[M]. Beijing: Science Press, 2009: 15-21. (in Chinese)
    [17] ZHOU Hao, XIAO Ming, YANG Yang, et al. Seismic response analysis method for lining structure in underground cavern of hydropower station[J]. KSCE Journal of Civil Engineering, 2019, 23(3): 1236-1247.
    [18] 李海波, 冯海鹏, 刘博. 不同剪切速率下岩石节理的强度特性研究[J]. 岩石力学与工程学报, 2006, 25(12): 2435-2440.

    LI Hai-bo, FENG Hai-peng, LIU Bo. Study on strength behaviors of rock joints under different shearing deformation velocities[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2435-2440. (in Chinese)
    [19] 张志国, 肖明, 陈俊涛. 大型地下洞室地震灾变过程三维动力有限元模拟[J]. 岩石力学与工程学报, 2011, 30(3): 509-523.

    ZHANG Zhi-guo, XIAO Ming, CHEN Jun-tao. Simulation of earthquake disaster process of large-scale underground caverns using three-dimensional dynamic finite element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(3): 509-523. (in Chinese)
    [20] MAZARS J. A description of micro- and macro-scale damage of concrete structures[J]. Engineering Fracture Mechanics, 1986, 25(5/6): 729-737.
    [21] 隋斌, 朱维申, 李晓静. 地震荷载作用下大型地下洞室群的动态响应模拟[J]. 岩土工程学报, 2008, 30(12): 1877-1882.

    SUI Bin, ZHU Wei-shen, LI Xiao-jing. Simulation on dynamic response of large underground opening complex under seismic loads[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1877-1882. (in Chinese)
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  114
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回