留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于应力率正交分解的广义非共轴理论

王兴 孔亮 李学丰

王兴, 孔亮, 李学丰. 基于应力率正交分解的广义非共轴理论[J]. 机械工程学报, 2021, 43(12): 2180-2189. doi: 10.11779/CJGE202112004
引用本文: 王兴, 孔亮, 李学丰. 基于应力率正交分解的广义非共轴理论[J]. 机械工程学报, 2021, 43(12): 2180-2189. doi: 10.11779/CJGE202112004
WANG Xing, KONG Liang, LI Xue-feng. Generalized non-coaxial theory based on orthogonal decomposition of stress rate[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 43(12): 2180-2189. doi: 10.11779/CJGE202112004
Citation: WANG Xing, KONG Liang, LI Xue-feng. Generalized non-coaxial theory based on orthogonal decomposition of stress rate[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 43(12): 2180-2189. doi: 10.11779/CJGE202112004

基于应力率正交分解的广义非共轴理论

doi: 10.11779/CJGE202112004
基金项目: 

国家自然科学基金项目 51778311

宁夏重点研发项目 2018DWHZ0084

宁夏科技创新领军人才计划 KJT2019001

详细信息
    作者简介:

    王兴(1988— ),男,博士研究生,主要从事岩土本构关系方面的研究。E-mail:1306825892@qq.com

    通讯作者:

    *通信作者(E-mail:qdkongliang@163.com

  • 中图分类号: TU43

Generalized non-coaxial theory based on orthogonal decomposition of stress rate

  • 摘要: 传统非共轴理论中非共轴塑性应变率与非共轴应力率之间通常采用线性假设并且二者始终同向,这与土体实际的非共轴变形特性不相符。为了弥补这一缺陷,首先基于数学推导证明了总应力率可以分解为6个正交方向上的分量应力率之和,由此揭示出传统非共轴理论中定义的非共轴应力率是由多项正交分量所构成。针对非共轴应力率中的每一正交分量,基于广义塑性力学,通过直接定义加载强度指标、塑性模量和塑性流动方向建立相应的非线性加载机制描述其所诱发的塑性变形。将总的非共轴塑性变形视为每一分量诱发的塑性变形之和,从而建立了一种广义形式的非共轴理论。推导了基于广义非共轴理论建立土体弹塑性模型时的应力应变关系式。针对模型评估的数值试验显示了广义非共轴理论的合理性,从而表明了新建理论能够为土体非共轴模型的建立提供更为广泛的理论基础。

     

  • 图  传统的非共轴理论[14]

    Figure  1.  Traditional non-coaxial theory by Ref. [14]

    图  传统的非共轴理论[15]

    Figure  2.  Traditional non-coaxial theory by Ref. [15]

    图  传统的非共轴理论[16]

    Figure  3.  Traditional non-coaxial theory by Ref. [16]

    图  塑性流动方向[22]

    Figure  4.  Plastic flow direction by Ref [22]

    图  几何映射方法示意图

    Figure  5.  Schematic diagram of geometric mapping method

    图  插值系数法示意图

    Figure  6.  Schematic diagram of interpolation coefficient method

    图  加载与反向加载

    Figure  7.  Loading and reverse loading

    图  第二类非共轴加载

    Figure  8.  Second kind of non-coaxial loading

    图  应力探测示意图

    Figure  9.  Schematic diagram of stress probe tests

    图  10  应变探测示意图

    Figure  10.  Schematic diagram of stress probe tests

    图  11  应力率响应包络线

    Figure  11.  Response envelopes of stress rate

  • [1] 郑颖人, 孔亮. 岩土塑性力学[M]. 2版. 北京: 中国建筑工业出版社, 2019.

    ZHENG Ying-ren, KONG Liang. Geotechnical Plastic Mechanics[M]. 2nd ed. Beijing: China Architecture and Building Press, 2019. (in Chinese)
    [2] 王兴, 孔亮, 李学丰. 砂土非共轴本构模型及其在地基承载力方面的应用[J]. 岩土工程学报, 2020, 42(5): 892-899.

    WANG Xing, KONG Liang, LI Xue-feng. Three-dimensional non-coaxial constitutive model for sand and its application in bearing capacity of foundation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 892-899. (in Chinese)
    [3] 王兴, 孔亮, 李学丰. 基于改进角点理论的砂土非共轴模型及其应用[J]. 岩土工程学报, 2021, 43(2): 254-262.

    WANG Xing, KONG Liang, LI Xue-feng. Non-coaxial sand model based on improved vertex theory and its application[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 254-262. (in Chinese)
    [4] TIAN Y, YAO Y P. Constitutive modeling of principal stress rotation by considering inherent and induced anisotropy of soils[J]. Acta Geotechnica, 2018, 13(6): 1299-1311.
    [5] TIAN Y, YAO Y P. Modelling the non-coaxiality of soils from the view of cross-anisotropy[J]. Computers and Geotechnics, 2017, 86: 219-229.
    [6] 田雨, 姚仰平, 罗汀. 从各向异性的角度解释和模拟土的非共轴特性[J]. 岩土力学, 2018, 39(6): 2035-2042.

    TIAN Yu, YAO Yang-ping, LUO Ting. Explanation and modeling of non-coaxiality of soils from anisotropy[J]. Rock and Soil Mechanics, 2018, 39(6): 2035-2042. (in Chinese).
    [7] GAO Z W, ZHAO J D. A non-coaxial critical-state model for sand accounting for fabric anisotropy and fabric evolution[J]. International Journal of Solids and Structures, 2017(106/107): 200-212.
    [8] PETALAS A L, DAFALIAS Y F, PAPADIMITRIOU A G. SANISAND-FN: an evolving fabric-based sand model accounting for stress principal axes rotation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(1): 97-123.
    [9] HU N, YU H S, YANG D S, et al. Constitutive modelling of granular materials using a contact normal-based fabric tensor[J]. Acta Geotechnica, 2020, 15(5): 1125-1151.
    [10] LI X S, DAFALIAS Y F. A constitutive framework for anisotropic sand including non-proportional loading[J]. Géotechnique, 2004, 54(1): 41-55.
    [11] 袁冉, 杨文波, 余海岁, 等. 土体非共轴各向异性对城市浅埋土质隧道诱发地表沉降的影响[J]. 岩土工程学报, 2018, 40(4): 673-680.

    YUAN Ran, YANG Wen-bo, YU Hai-sui, et al. Effects of non-coaxiality and soil anisotropy on tunneling-induced subsurface settlements[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 673-680. (in Chinese)
    [12] 吕玺琳, 黄茂松, 钱建固. 基于非共轴本构模型的砂土真三轴试验分叉分析[J]. 岩土工程学报, 2008, 30(5): 646-651.

    LÜ Xi-lin, HUANG Mao-song, QIAN Jian-gu. Bifurcation analysis in true traxial tests on sands based on non-coaxial elasto-plasticity model[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 646-651. (in Chinese)
    [13] 刘元雪, 郑颖人. 考虑主应力轴旋转对土体应力-应变关系影响的一种新方法[J]. 岩土工程学报, 1998, 20(2): 45-47.

    LIU Yuan-xue, ZHENG Ying-ren. A new method to analyze the influence of principal stress axes rotation on the stress strain relation of soils[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 45-47. (in Chinese)
    [14] RUDNICKI J W, RICE J R. Conditions for the localization of deformation in pressure-sensitive dilatant materials[J]. Journal of the Mechanics and Physics of Solids, 1975, 23(6): 371-394.
    [15] HASHIGUCHI K, TSUTSUMI S. Shear band formation analysis in soils by the subloading surface model with tangential stress rate effect[J]. International Journal of Plasticity, 2003, 19(10): 1651-1677.
    [16] 钱建固, 黄茂松, 杨峻. 真三维应力状态下土体应变局部化的非共轴理论[J]. 岩土工程学报, 2006, 28(4): 510-515.

    QIAN Jian-gu, HUANG Mao-song, YANG Jun. Effect of non-coaxial plasticity on onset strain localization in soils under 3D stress condition[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 510-515. (in Chinese)
    [17] 李学丰, 黄茂松, 钱建固. 宏-细观结合的砂土单剪试验非共轴特性分析[J]. 岩土力学, 2013, 34(12): 3417-3424.

    LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Analysis of non-coaxial characters of sand for simple shear test with the method of macro-meso-incorporation[J]. Rock and Soil Mechanics, 2013, 34(12): 3417-3424. (in Chinese)
    [18] 陈洲泉, 黄茂松. 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报, 2018, 40(2): 243-251.

    CHEN Zhou-quan, HUANG Mao-song. Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 243-251. (in Chinese)
    [19] LI X S, DAFALIAS Y F. Noncoaxiality between two tensors with application to stress rate decomposition and fabric anisotropy variable[J]. Journal of Engineering Mechanics, 2020, 146(3): 4020004.
    [20] ZIENKIEWICZ O C. Generalized plasticity and some models for geomechanics[J]. Applied Mathematics and Mechanics, 1982, 3(3): 303-318.
    [21] DAFALIAS Y F. An anisotropic critical state soil plasticity model[J]. Mechanics Research Communications, 1986, 13(6): 341-347.
    [22] GUTIERREZ M, ISHIHARA K, TOWHATA I. Flow theory for sand during rotation of principal stress direction[J]. Soils and Foundations, 1991, 31(4): 121-132.
    [23] 蔡燕燕, 俞缙, 余海岁, 等. 加载路径对粗粒土非共轴性影响的试验研究[J]. 岩土工程学报, 2012, 34(6): 1117-1122.

    CAI Yan-yan, YU Jin, YU Hai-sui, et al. Experimental study on effect of loading path on non-coaxiality of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1117-1122. (in Chinese)
    [24] YAMADA Y, ISHIHARA K. Undrained deformation characteristics of sand in multi-directional shear[J]. Soils and Foundations, 1983, 23(1): 61-79.
    [25] NAKATA Y, HYODO M, MURATA H, et al. Flow deformation of sands subjected to principal stress rotation[J]. Soils and Foundations, 1998, 38(2): 115-128.
    [26] 童朝霞, 张建民, 于艺林, 等. 中主应力系数对应力主轴循环旋转条件下砂土变形特性的影响[J]. 岩土工程学报, 2009, 31(6): 946-952.

    TONG Zhao-xia, ZHANG Jian-min, YU Yi-lin, et al. Effects of intermediate principal stress parameter on deformation behavior of sands under cyclic rotation of principal stress axes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 946-952. (in Chinese)
    [27] LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
    [28] GUDEHUS G. A comparison of some constitutive laws for soils under radially symmetric loading and unloading[C]//Proceedings of the 3th Conference on Numerical Methods in Geomechanics, 1979, Aachen.
  • 加载中
图(11)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  47
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-26
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回