Influences of particle shape and degree of compaction on shear response of clinker ash
-
摘要: 炉渣颗粒土是火电厂发电过程中煤炭燃烧产生的一种颗粒废弃物,近年来经常作为边坡和路基回填材料在工程建设中使用。对6种不同产地的炉渣颗粒土进行了单颗粒破碎试验,发现炉渣颗粒土的单颗粒强度显著低于天然砂土,具有较大的破碎性。随后,开展了一系列排水三轴剪切试验,研究了颗粒形状、压实度和围压对其剪切特性的影响。三轴试验结果表明,压实度可以显著提高炉渣颗粒土的初始刚度及峰值抗剪强度。相较于自然砂土,炉渣颗粒土拥有较大的峰值摩擦角,作为回填材料可提供较大的承载力。另外,炉渣颗粒土的峰值摩擦角随着围压的增大而降低。分析结果揭示颗粒形状和单颗粒强度均是影响炉渣颗粒土抗剪强度的重要因素。在不同的围压水平,两者对峰值抗剪强度的影响程度有所不同。另外,通过图像分析法获取了不同种类炉渣颗粒土的多种形状参数,发现炉渣颗粒土的圆度和球度都显著小于大部分自然砂土,表明该类颗粒材料拥有较为复杂的颗粒形状。分析结果还表明炉渣颗粒土的临界状态摩擦角与炉渣颗粒土的各个形状参数都存在一定程度的关联性。采用了一个新的能够考虑多种颗粒形状因素影响的综合指标,建立了其与临界状态强度和临界状态线位置参数的经验关系表达式。Abstract: The clinker ash is a kind of granular waste produced after the combustion of coal. It has been used in slope and foundation engineering as backfill materials. The single-particle crushing tests on the clinker ash from six different origins are carried out. The results indicate that the clinker ash particles own much lower single-particle strength than the natural sands and exhibit larger crushability. A series of drained triaxial shear tests are performed on the clinker ash to examine the effects of particle shape, degree of compaction and effective confining pressure on its shear characteristics. An increase in the degree of compaction strengthens the initial stiffness and the peak shear strength of the clinker ash. Compared to the natural sands, the clinker ash possesses larger peak friction angle and provides higher bearing capacity as foundation materials. As the effective confining pressure increases, the peak friction angle of the clinker ash gradually decreases. The results suggest that both the particle shape and the single-particle strength are important factors affecting the shear strength of the clinker ash. In addition, several particle shape parameters of the clinker ash are decided using the digital image analysis method. The clinker ash has smaller roundness and sphericity indexes due to its complex particle shape. The analysis results show that the critical state friction angle is well correlated with the particle shape parameters. A general and new particle shape index is employed to correlate with the relevant parameters associated with the critical state and its position.
-
Key words:
- particle shape /
- clinker ash /
- critical state /
- degree of compaction /
- friction angle
-
表 1 炉渣颗粒土物理性质
Table 1. Physical properties of clinker ash
试样 颗粒相对质量密度Gs 最大孔隙比 最小孔隙比 不均匀系数 平均粒径 /mm 平均单颗粒强度 /MPa CA.A 2.072 1.748 0.949 20.3 0.570 4.27 CA.B 2.151 1.646 1.010 12.5 0.210 1.99 CA.C 2.173 1.618 0.883 13.8 1.300 2.56 CA.D 2.132 1.488 0.887 21.2 0.220 1.04 CA.E 2.151 1.422 0.752 26.7 0.710 4.75 CA.F 2.110 1.425 0.769 21.0 1.750 3.12 表 2 炉渣颗粒土的颗粒形状参数
Table 2. Particle shape parameters of clinker ash
试样 圆形度R 长宽比 球度S 凹凸度C 平均规则性 CA.a 0.402 0.715 0.781 0.947 0.711 CA.b 0.375 0.708 0.707 0.930 0.680 CA.c 0.389 0.663 0.810 0.935 0.701 CA.d 0.414 0.645 0.801 0.949 0.702 CA.e 0.388 0.676 0.747 0.935 0.686 CA.f 0.387 0.652 0.751 0.941 0.682 CA.A 0.379 0.645 0.814 0.929 0.691 CA.B 0.366 0.684 0.822 0.916 0.697 CA.C 0.408 0.704 0.820 0.956 0.723 CA.D 0.362 0.625 0.823 0.928 0.684 CA.E 0.396 0.689 0.821 0.942 0.712 CA.F 0.384 0.714 0.817 0.945 0.715 表 3 三轴排水剪切试验条件
Table 3. Experimental conditions for drained triaxial shear tests
试样 /kPa 实际压实度Dc/% 试样 /kPa 实际压实度Dc/% CA.A 50 83.5 88.1 96.9 CA.D 50 83.6 87.3 100 88 97.9 100 90.8 100.7 200 83.4 87.4 99.1 200 85.0 101.4 CA.B 50 88.1 90.1 103.4 CA.E 50 84.6 87.7 100.1 100 92.7 104.2 100 85.0 86.2 102.9 200 86.0 93.7 104.9 200 90.0 98.0 CA.C 50 83.8 88.2 96.8 CA.F 50 85.0 88.9 100.3 100 98.6 100 85.0 92.0 99.3 200 83.0 101.0 200 99.9 注: 目标压实度Dc为85%,90%,100%。表 4 炉渣颗粒土临界状态摩擦角与临界状态线几何参数
Table 4. Critical state friction angles and geometrical parameters of critical state line for clinker ash
试样 临界状态摩擦角 截距Γ 斜率 CA.A 39.95 1.541 0.121 CA.B 40.15 1.589 0.117 CA.C 38.82 1.596 0.097 CA.D 40.10 1.576 0.132 CA.E 39.02 1.598 0.114 CA.F 39.54 1.609 0.102 CA.a 38.77 1.619 0.098 CA.b 39.45 1.621 0.108 CA.c 39.04 1.545 0.121 CA.d 38.60 1.655 0.114 CA.e 39.16 1.591 0.111 CA.f 39.21 1.589 0.127 -
[1] 闫澍旺, 李嘉, 张京京, 等. 石灰炉渣轻质混合料处理地基试验研究及工程应用[J]. 岩土工程学报, 2015, 37(增刊1): 6-10.YAN Shu-wang, LI Jia, ZHANG Jing-jing, et al. Experimental research and engineering application of lime-slag mixed materials used in foundation treatment[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 6-10. (in Chinese) [2] 刘传孝, 田鸿业, 张加旺, 等. 炉渣置换软土地基的注浆均质度影响试验研究[J]. 岩土工程学报, 2010, 32(增刊2): 517-520.LIU Chuan-xiao, TIAN Hong-ye, ZHANG Jia-wang, et al. Test on grouting homogeneity degree of slag to replace soft soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 517-520. (in Chinese) [3] 章定文, 曹智国. 工业废渣加固土强度特性[J]. 岩土力学, 2013, 34(增刊1): 54-59.ZHANG Ding-wen, CAO Zhi-guo. Strength characteristics of stabilized soils using industrial by-product binders[J]. Rock and Soil Mechanics, 2013, 34(S1): 54-59. (in Chinese) [4] CONSOLI N C, HEINECK K S, COOP M R, et al. Coal bottom ash as a geomaterial: influence of particle morphology on the behavior of granular materials[J]. Soils and Foundations, 2007, 47(2): 361-373. [5] WAKATSUKI Y, HYODO M, YOSHIMOTO N, et al. Particle characteristics and strength, deformation characteristics of loose clinker ash[J]. Doboku Gakkai Ronbunshuu C, 2009, 65(4): 897-914. [6] WINTER M, SUESHIMA T, YOSHIMOTO N, et al. Effect of particle characteristics on the shear strength of clinker ash[M]//Geomechanics from Micro to Macro. Macro: CRC Press, 2014: 1099-1104. [7] CHO G C, DODDS J, SANTAMARINA J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591-602. [8] 刘清秉, 项伟, BUDHU M, 等. 砂土颗粒形状量化及其对力学指标的影响分析[J]. 岩土力学, 2011, 32(增刊1): 190-197.LIU Qing-bing, XIANG Wei, BUDHU M, et al. Study of particle shape quantification and effect on mechanical property of sand[J]. Rock and Soil Mechanics, 2011, 32(S1): 190-197. (in Chinese) [9] YANG J, LUO X D. Exploring the relationship between critical state and particle shape for granular materials[J]. Journal of the Mechanics and Physics of Solids, 2015, 84: 196-213. [10] ZHOU B, WANG J, WANG H. Three-dimensional sphericity, roundness and fractal dimension of sand particles[J]. Géotechnique, 2018, 68(1): 18-30. [11] ZHAO S W, ZHAO J D. A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(13): 2147-2169. [12] NIE J Y, LI D Q, CAO Z J, et al. Probabilistic characterization and simulation of realistic particle shape based on sphere harmonic representation and Nataf transformation[J]. Powder Technology, 2020, 360: 209-220. [13] 孔亮, 彭仁. 颗粒形状对类砂土力学性质影响的颗粒流模拟[J]. 岩石力学与工程学报, 2011, 30(10): 2112-2119.KONG Liang, PENG Ren. Particle flow simulation of influence of particle shape on mechanical properties of quasi-sands[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2112-2119. (in Chinese) [14] 张程林, 周小文. 砂土颗粒三维形状模拟离散元算法研究[J]. 岩土工程学报, 2015, 37(增刊1): 115-119.ZHANG Cheng-lin, ZHOU Xiao-wen. Algorithm for modelling three-dimensional shape of sand based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 115-119. (in Chinese) [15] 常晓林, 马刚, 周伟, 等. 颗粒形状及粒间摩擦角对堆石体宏观力学行为的影响[J]. 岩土工程学报, 2012, 34(4): 646-653.CHANG Xiao-lin, MA Gang, ZHOU Wei, et al. Influences of particle shape and inter-particle friction angle on macroscopic response of rockfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 646-653. (in Chinese) [16] MA G, ZHOU W, REGUEIRO R A, et al. Modeling the fragmentation of rock grains using computed tomography and combined FDEM[J]. Powder Technology, 2017, 308: 388-397. [17] HUANG Q S, ZHOU W, MA G, et al. Experimental and numerical investigation of Weibullian behavior of grain crushing strength[J]. Geoscience Frontiers, 2020, 11(2): 401-411. [18] 康馨, 陈植欣, 雷航, 等. 基于3D打印研究颗粒形状对砂土宏观力学性质的影响[J]. 岩土工程学报, 2020, 42(9): 1765-1772.KANG Xin, CHEN Zhi-xin, LEI Hang, et al. Effects of particle shape on mechanical performance of sand with 3D printed soil analog[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1765-1772. (in Chinese) [19] ALTUHAFI F N, COOP M R, GEORGIANNOU V N. Effect of particle shape on the mechanical behavior of natural sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(12): 4016071. [20] LASHKARI A, FALSAFIZADEH S R, SHOURIJEH P T, et al. Instability of loose sand in constant volume direct simple shear tests in relation to particle shape[J]. Acta Geotechnica, 2020, 15(9): 2507-2527. [21] JIS A 1224. Test Method for Minimum and Maximum Densities of Gravels[S]. 2009. [22] YOSHIMURA Y, OGAWA S. A simple quantification method of grain shape of granular materials such as sand[J]. Doboku Gakkai Ronbunshu, 1993, 1993(463): 95-103. [23] ZHENG J, HRYCIW R D. Traditional soil particle sphericity, roundness and surface roughness by computational geometry[J]. Géotechnique, 2015, 65(6): 494-506. [24] NAKATA Y, HYODO M, HYDE A F L, et al. Microscopic particle crushing of sand subjected to high pressure one-dimensional compression[J]. Soils and Foundations, 2001, 41(1): 69-82. [25] MCDOWELL G R, BOLTON M D. On the micromechanics of crushable aggregates[J]. Géotechnique, 1998, 48(5): 667-679. [26] KIM B, PREZZI M, SALGADO R. Geotechnical properties of fly and bottom ash mixtures for use in highway embankments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(7): 914-924. [27] BOPP P A, LADE P. Relative density effects on drained sand behavior at high pressures[J]. Soils and Foundations, 2005, 45: 15-26. [28] YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. [29] YAO Y P, SUN D A, MATSUOKA H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path[J]. Computers and Geotechnics,2008, 35(2): 210-222. [30] YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63(15): 1328-1345. [31] YAO Y P, LU D C, ZHOU A N, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E: Technological Sciences, 2004, 47: 691-709.