Discrete element simulation of collapse characteristics of particle column considering gradation and shape
-
摘要: 颗粒形态和级配情况等是影响碎屑颗粒流(如滑坡、泥石流、岩崩等)运动的重要因素。基于沃洛诺伊镶嵌原理的随机生成方法创建了不同长细比不同级配的多面体颗粒,引入势粒子算法用于考虑颗粒间的接触作用,根据室内试验确定了离散元接触模型的各项参数,对考虑级配和形态的颗粒柱坍塌特性开展数值试验,研究结果表明:①颗粒柱的归一化堆积高度随颗粒的长细比和中值粒径d50的减小而减小,归一化跑出距离则随其减小而增加。②堆积过程中不同工况的相对静止角
为61.49°~64.99°,且变化规律与归一化堆积高度变化一致。③不同工况的归一化能量耗散为27.1%~35.5%,且转动动能仅占平动动能的8.20%~9.05%。④归一化动能和颗粒配位数呈现负相关的关系,归一化动能达到峰值时颗粒配位数也达到最小值。⑤崩塌过程中强力链一般分布在滑动堆积体的中下部区域,形成力链传递的“拱效应”。中值粒径d50和长细比增大会减少强力链的数量,接触力传递的路径少而集中,从而限制颗粒在堆积过程中的运动。 Abstract: Particle shape and gradation are the important factors affecting the movement of debris particle flows (such as landslides, debris flows, rock slides, etc.). The random generation method based on the Voronoi tessellation creates polyhedral particles with different aspect ratios and gradations. The potential particle algorithm is introduced to consider the contact effect between particles. The parameters of the contact model of discrete element are determined according to the indoor tests. For the item parameters, numerical experiments are carried out on the collapse characteristics of the particle column considering the gradation and morphology. The research results show that: (1) The normalized stacking height of the particle column decreases with the decrease of the aspect ratio and the median diameter (d50) of the particles, and the normalized run-out distance increases with the decrease. (2) The relative angle of repose under different working conditions during the accumulation process is in the range of 61.49°~64.99°, and the change rule is consistent with the change of the normalized accumulation height. (3) The normalized energy dissipation range under different working conditions is between 27.1%~35.5%, and the rotational kinetic energy only accounts for 8.20%~9.05% of the translational kinetic energy. (4) The normalized kinetic energy has a negative correlation with the particle coordination number, and the particle coordination number reaches the minimum when the normalized kinetic energy reaches its peak. (5) In the process of collapse, the strong chain is generally distributed in the middle and lower areas of the sliding accumulation body, forming the "arch effect" of the transmission of the force chain. The increase in the median particle size (d50) and the slenderness ratio will reduce the number of strong chains, and the paths of contact force transmission will be small and concentrated, thereby restricting the movement of particles during the accumulation process.-
Key words:
- particle column /
- gradation /
- aspect ratio /
- potential particle /
- collapse process /
- discrete element method
-
图 1 随机形态多面生成方法[13]
Figure 1. Random shape multi-faceted generation method
表 1 离散元参数表
Table 1. Parameters of discrete elements
类别 密度/(kg·m³) 摩擦角/(°) 法向刚度 /(108 N·m-1) 切向刚度 /(108N·m-1) 局部阻尼系数 十二面体 2500 30 1 1 0.4 长方体槽 3500 35 1 1 0.4 表 2 摩擦系数表
Table 2. Friction coefficients
类别 摩擦系数 颗粒-挡板 0.24 颗粒-底板 0.25 表 3 室内试验和数值模拟结果对比
Table 3. Comparison between indoor tests and numerical simulations
校准参数 最大跑出距离 /mm 最终堆积高度 /mm 相对静止角 /(°) 滑动体积占比w/% 室内试验 788 274 47.62 56.97 数值试验 771 270 47.20 53.11 相对误差/% 2.16 1.46 0.88 6.7 表 4 不同级配颗粒的中值粒径
Table 4. Median particle sizes of different graded particles
级配 PSD1 PSD2 PSD3 中值粒径d50/mm 27.75 19.52 15.49 -
[1] 刘广煜, 徐文杰, 佟彬, 等. 基于块体离散元的高速远程滑坡灾害动力学研究[J]. 岩石力学与工程学报, 2019, 38(8): 1557-1566.LIU Guang-yu, XU Wen-jie, TONG Bin, et al. Study on dynamics of high-speed and long Run-out landslide hazards based on block discrete element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1557-1566. (in Chinese) [2] MARKS B, ROGNON P, EINAV I. Grainsize dynamics of polydisperse granular segregation down inclined planes[J]. Journal of Fluid Mechanics, 2012, 690: 499-511. [3] 张雪, 盛岱超. 一种模拟土体流动的连续体数值方法[J]. 岩土工程学报, 2016, 38(3): 562-569.ZHANG Xue, SHENG Dai-chao. Continuum approach for modelling soil flow in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 562-569. (in Chinese) [4] OREFICE L, KHINAST J G. Deformable and breakable DEM particle clusters for modelling compression of plastic and brittle porous materials—Model and structure properties[J]. Powder Technology, 2020, 368: 90-104. [5] ZENIT R. Computer simulations of the collapse of a granular column[J]. Physics of Fluids, 2005, 17(3): 31703. [6] LUBE G, HUPPERT H E, SPARKS R S J, et al. Collapses of two-dimensional granular columns[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(4 Pt 1): 041301. [7] UTILI S, ZHAO T, HOULSBY G T. 3D DEM investigation of granular column collapse: Evaluation of debris motion and its destructive power[J]. Engineering Geology, 2015, 186: 3-16. [8] PHILLIPS J C, HOGG A J, KERSWELL R R, et al. Enhanced mobility of granular mixtures of fine and coarse particles[J]. Earth and Planetary Science Letters, 2006, 246(3/4): 466-480. [9] 张成功, 尹振宇, 吴则祥, 等. 颗粒形状对粒状材料圆柱塌落影响的三维离散元模拟[J]. 岩土力学, 2019, 40(3): 1197-1203.ZHANG Cheng-gong, YIN Zhen-yu, WU Ze-xiang, et al. Three-dimensional discrete element simulation of influence of particle shape on granular column collapse[J]. Rock and Soil Mechanics, 2019, 40(3): 1197-1203. (in Chinese) [10] ŠMILAUER V. Yade Documentation[M]. 2nd ed. 2015. The Yade Project. doi: 10.5281/zenodo.34073 (http://yade-dem.org/doc/) [11] CUNDALL P A, STRACK O D L. Discussion: a discrete numerical model for granular assemblies[J]. Géotechnique, 1980, 30(3): 33-336. [12] LANDAUER J, KUHN M, NASATO D S, et al. Particle shape matters - Using 3D printed particles to investigate fundamental particle and packing properties[J]. Powder Technology, 2020, 361: 711-718. [13] ELIÁŠ J. Simulation of railway ballast using crushable polyhedral particles[J]. Powder Technology, 2014, 264: 458-465. [14] BOON C W, HOULSBY G T, UTILI S. A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method[J]. Computers and Geotechnics, 2012, 44: 73-82. [15] BOYD S, VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004. [16] COETZEE C J. Review: Calibration of the discrete element method[J]. Powder Technology, 2017, 310: 104-142. [17] ZHAO S W, ZHOU X W, LIU W H. Discrete element simulations of direct shear tests with particle angularity effect[J]. Granular Matter, 2015, 17(6): 793-806. [18] MINDLIN R D. Compliance of elastic bodies in contact[J]. Journal of Applied Mechanics, 1949, 16(3): 259-268. [19] LI Y J, XU Y, THORNTON C. A comparison of discrete element simulations and experiments for ‘sandpiles’ composed of spherical particles[J]. Powder Technology, 2005, 160(3): 219-228. [20] 王玉峰, 程谦恭, 朱圻. 汶川地震触发高速远程滑坡-碎屑流堆积反粒序特征及机制分析[J]. 岩石力学与工程学报, 2012, 31(6): 1089-1106.WANG Yu-feng, CHENG Qian-gong, ZHU Qi. Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1089-1106. (in Chinese) [21] 边学成, 李伟, 李公羽, 等. 基于颗粒真实几何形状的铁路道砟剪切过程三维离散元分析[J]. 工程力学, 2015, 32(5): 64-75, 83.BIAN Xue-cheng, LI Wei, LI Gong-yu, et al. Three-dimensional discrete element analysis of railway ballast's shear process based on particles' real geometry[J]. Engineering Mechanics, 2015, 32(5): 64-75, 83. (in Chinese) [22] 杨舒涵, 周伟, 马刚, 等. 粒间摩擦对岩土颗粒材料三维力学行为的影响机制[J]. 岩土工程学报, 2020, 42(10): 1885-1893.YANG Shu-han, ZHOU Wei, MA Gang, et al. Mechanism of inter-particle friction effect on 3D mechanical response of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1885-1893. (in Chinese) [23] ZHAO X L, EVANS T M. Numerical analysis of critical state behaviors of granular soils under different loading conditions[J]. Granular Matter, 2011, 13(6): 751-764. [24] 孙其诚, 王光谦. 静态堆积颗粒中的力链分布[J]. 物理学报, 2008, 57(8): 4667-4674.SUN Qi-cheng, WANG Guang-qian. Force distribution in static granular matter in two dimensions[J]. Acta Physica Sinica, 2008, 57(8): 4667-4674. (in Chinese) [25] 戴北冰, 杨峻, 刘锋涛, 等. 散粒土自然堆积的宏细观特征与形成机制[J]. 岩土工程学报, 2019, 41(增刊2): 57-60.DAI Bei-bing, YANG Jun, LIU Feng-tao, et al. Macro-and micro-properties and formation mechanisms of granular piles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 57-60. (in Chinese)