留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液晶相位调控器件的高功率激光应用相关问题

刘晓凤 赵元安 彭丽萍 汪小双 李大伟 邵建达

刘晓凤, 赵元安, 彭丽萍, 汪小双, 李大伟, 邵建达. 液晶相位调控器件的高功率激光应用相关问题[J]. 机械工程学报, 2020, 32(3): 032003. doi: 10.11884/HPLPB202032.190426
引用本文: 刘晓凤, 赵元安, 彭丽萍, 汪小双, 李大伟, 邵建达. 液晶相位调控器件的高功率激光应用相关问题[J]. 机械工程学报, 2020, 32(3): 032003. doi: 10.11884/HPLPB202032.190426
Xiaofeng Liu, Yuan’an Zhao, Liping Peng, Xiaoshuang Wang, Dawei Li, Jianda Shao. Application problems of liquid crystal phase modulators to high power lasers[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 32(3): 032003. doi: 10.11884/HPLPB202032.190426
Citation: Xiaofeng Liu, Yuan’an Zhao, Liping Peng, Xiaoshuang Wang, Dawei Li, Jianda Shao. Application problems of liquid crystal phase modulators to high power lasers[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 32(3): 032003. doi: 10.11884/HPLPB202032.190426

液晶相位调控器件的高功率激光应用相关问题

doi: 10.11884/HPLPB202032.190426
详细信息
    作者简介:

    刘晓凤(1982—), 女,博士,副研究员,从事激光辐照效应与机理研究;liuxiaofeng@siom.ac.cn

  • 中图分类号: O436

Application problems of liquid crystal phase modulators to high power lasers

  • 摘要: 液晶相位调控器件在聚变点火、激光加工、光电对抗、激光雷达、激光通讯、激光防护等高功率激光领域有着非常广泛的应用及应用前景。但受限于构成器件材料自身抗激光损伤能力的限制以及缺乏对高功率激光辐照下液晶相位调控器件相位调控性能退化及损伤特性的系统研究,目前液晶相位调控器件的激光耐受力还难以满足高功率激光系统的应用和发展需求。为指导高激光耐受力液晶相位调控器件的制备工艺优化,对液晶相位调控器件在高峰值和高平均功率激光应用下出现的损伤现象以及性能退化进行了综述,最后对液晶相位调控器件激光耐受力提升方法做了总结和归纳。

     

  • 图  阈值附近ITO的典型损伤形貌,其中(b),(c)(d)分别对应(a)中1,2,3所示的方框位置

    Figure  1.  Typical damage morphology of ITO/glass at a lower fluence (near the LIDT). (b), (c), and (d) show local magnified views of micro-areas outlined by the rectangles 1, 2, and 3 in (a), respectively

    图  ITO薄膜在100%损伤几率能流下的典型损伤形貌及损伤深度

    Figure  2.  Typical damage morphology and depth profile of the ITO/glass sample at a higher fluence (near 100% damage probability)

    图  PI/ITO薄膜的典型损伤形貌

    Figure  3.  Typical damage morphologies of the PI/ITO/glass sample

    图  高峰值功率激光辐照下,ITO和PI薄膜的温度场分布

    Figure  4.  Temperature distribution of the irradiated center in the samples. The dashed lines represent the vaporization temperature of the ITO film

    图  高平均功率激光辐照下,液晶光学器件相位特性变化的检测原理图[35]

    Figure  5.  Schematic diagram of measuring phase modulation of the liquid crystal device induced by the high-average-power laser[35]

    图  连续激光辐照功率141 W/cm2 下降到133 W/cm2的过程中,偏光显微镜下观察到器件内部液晶材状态的变化[35]

    Figure  6.  Morphologies observed by the polarized light microscope for decrease in the laser power density from 141 W/cm2 to 133 W/cm2

    图  不同功率密度激光辐照液晶器件的过程中,通过检偏器的He-Ne透射光强度随液晶器件加载电压的变化[36]

    Figure  7.  Transmitted He-Ne light intensity after the analyzer varies with voltage apllied on the liquid crystal device when the liquid crystal device is irridiated by different laser power densities [36]

    图  不同功率密度激光辐照下的损伤形貌

    Figure  8.  Damage morphologies induced by different power densities

    图  3 000 W/cm2 激光辐照下,30 s内ITO/PI样品的纵向温度变化

    Figure  9.  Vertical temperature distribution in first 30 s under 3 000 W/cm2 laser irradiation

    图  10  通过检偏后的探测光归一化透过率模拟结果和实测结果[37]

    Figure  10.  Simulation and measurement results of the normalized ransmitted power of the probe laser after the analyzer[37]

  • [1] 李维諟, 郭强. 液晶显示应用技术[M]. 北京: 电子工业出版社, 2005.

    Li Weishi, Guo Qiang. Application technology of liquid crystal display[M]. Beijing: Publishing House of Electronics Industry, 2005
    [2] 叶必卿. 液晶空间光调制器特性研究及在全息测量中的应用[D]. 杭州: 浙江大学, 2006.

    Ye Biqing. The Characteristics of liquid-crystal spatial light modulator and its application[D]. Hangzhou: Zhejiang University, 2006
    [3] Beeckman J, Neyts K, Vanbrabant P J M. Liquid-crystal photonic applications[J]. Optical Engineering, 2011, 50: 081202. doi: 10.1117/1.3565046
    [4] Cao Z, Mu Q, Hu L, et al. Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope[J]. Optics Express, 2009, 17(4): 2530-2537. doi: 10.1364/OE.17.002530
    [5] Dayton D, Gonglewski J, Restaino S, et al. Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites[J]. Optics Express, 2002, 10(25): 1508-1519. doi: 10.1364/OE.10.001508
    [6] Jacobs S D, Cerqua K A, Marshall K L, et al. Liquid-crystal laser optics-design, fabrication, and performance[J]. Journal of the Optical Society of America B: Optical Physics, 1988, 5(9): 1962-1979. doi: 10.1364/JOSAB.5.001962
    [7] Marshall K L, Wei S K H, Vargas M, et al. Liquid crystal beam-shaping devices employing patterned photoalignment layers for high-peak-power laser applications[C]//Proc of SPIE. 2011: 81140P.
    [8] Heebner J, Borden M, Miller P, et al. Programmable beam spatial shaping system for the National Ignition Facility[C]//Proc of SPIE. 2011: 79160H.
    [9] 郑万国, 李平, 张锐, 等. 高功率激光装置光束精密调控性能研究进展[J]. 强激光与粒子束, 2020, 32:011003. (Zheng Wanguo, Li Ping, Zhang Rui, et al. Progress on laser precise control for high power laser facility[J]. High Power Laser and Particle Beams, 2020, 32: 011003 doi: 10.11884/HPLPB202032.190469
    [10] Hayasaki Y, Sugimoto T, Takita A, et al. Variable holographic femtosecond laser processing by use of a spatial light modulator[J]. Applied Physics Letters, 2005, 87: 031103. doi: 10.1063/1.1994956
    [11] Beck R J, Parry J P, MacPherson W N, et al. Application of cooled spatial light modulator for high power nanosecond laser micromachining[J]. Optics Express, 2010, 18(16): 17059-17065. doi: 10.1364/OE.18.017059
    [12] 赵祥杰, 张大勇, 骆永全. 反射式液晶空间光调制器电控光束偏转[J]. 强激光与粒子束, 2012, 24(6):1324-1328. (Zhao Xiangjie, Zhang Dayong, Luo Yongquan. Electro-controllable optical beam deflection employing reflective liquid crystal spatial light modulator[J]. High Power Laser and Particle Beams, 2012, 24(6): 1324-1328 doi: 10.3788/HPLPB20122406.1324
    [13] He Xiaoxian, Wang Xiangru, Wu Liang, et al. Aperture scalable liquid crystal optically duplicated array of phased array[J]. Optics Communications, 2019, 451: 174-180. doi: 10.1016/j.optcom.2019.06.037
    [14] De La Tocnaye J L D. Engineering liquid crystals for optimal uses in optical communication systems[J]. Liquid Crystals, 2004, 31(2): 241-269. doi: 10.1080/02678290410001648570
    [15] Buck J, Serati S, Hosting L, et al. Polarization gratings for non-mechanical beam steering applications[C]//Proc of SPIE. 2012: 83950F.
    [16] 肖锋. 液晶光学相控阵关键技术研究[D]. 成都: 电子科技大学, 2018: 3.

    Xiao Feng. Research on key technologies of the liquid crystal optical phased array[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 3
    [17] McManamon P F, Dorschner T A, Corkum DL, et al. Optical phased array technology[C]//Proc of SPIE. 1996, 84(2): 268-298.
    [18] DorschneR T A. Adaptive photonic phased locked elements-an overview[R]. 2007.
    [19] Davis S R, Farca G, Rommel S D, et al. Analog, non-mechanical beam-steerer with 80 degree field of regard[C]//Proc of SPIE. 2008: 69710G.
    [20] Buck J, Serati S, Hosting L, et al. Polarization gratings for non-mechanical beam steering applications[C]//Proc of SPIE. 2012: 83950F.
    [21] Serati S, Hoy C L, Hosting L, et al. Large-aperture, wide-angle nonmechanical beam steering using polarization gratings[J]. Optical Engineering, 2017, 56(3): 031211.
    [22] Wang Ling. Self-activating liquid crystal devices for smart laser protection[J]. Liquid Crystals, 2016, 43(13-15): 2062-2078. doi: 10.1080/02678292.2016.1196506
    [23] Schmid A, Papernov S, Li Z W, et al. Liquid-crystal materials for high peak-power laser applications[J]. Molecular Crystals and Liquid Crystals, 1991, 207: 33-42. doi: 10.1080/10587259108032085
    [24] Vladimirov FL, Pletneva NI, Soms LN, et al. Laser-damage resistance of the liquid crystal modulators[J]. Molecular Crystals and Liquid Crystals Science and Technology Section A, 1998, 321: 213-221. doi: 10.1080/10587259808025088
    [25] Marshall K L, Saulnier D, Xianyu H, et al. Liquid crystal near-IR laser beam shapers employing photoaddressable alignment layers for high-peak-power applications[C]//Proc of SPIE. 2013: 88280N.
    [26] Raszewski Z, Piecek W, Jaroszewicz L, et al. Transparent laser damage resistant nematic liquid crystal cell "LCNP3"[J]. Opto-Electronics Review, 2014, 22(3): 196-200.
    [27] Tuna O, Selamet Y, Aygun G, et al. High quality ITO thin films grown by DC and RF sputtering without oxygen[J]. Journal of Physics D: Applied Physics, 2010, 43(5).
    [28] Wang Haifeng, Huang Zhimeng, Zhang Dayong, et al. Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm[J]. Journal of Applied Physics, 2011, 110(11): 113111. doi: 10.1063/1.3665715
    [29] Yoo J-H, Matthews M, Ramsey P, et al. Thermally ruggedized ITO transparent electrode films for high power optoelectronics[J]. Optics Express, 2017, 25(21): 25533-25545. doi: 10.1364/OE.25.025533
    [30] Raszewski Z, Piecek W, Jaroszewicz L, et al. Laser damage resistant nematic liquid crystal cell[J]. Journal of Applied Physics, 2013, 114(5): 053104. doi: 10.1063/1.4816682
    [31] Liu Xiaofeng, Peng Liping, Gao Yanqi, et al. Laser damage characteristics of indium-tin-oxide film and polyimide film[J]. Infrared Physics & Technology, 2019, 99: 80-85.
    [32] Marshall KL, Gan J, Mitchell G, et al. Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications[C]//Proc of SPIE. 2008: 70500L.
    [33] Xia Gang, Fan Wei, Huang Dajie, et al. High damage threshold liquid crystal binary mask for laser beam shaping[J]. High Power Laser Science and Engineering, 2019, 7: 1-6. doi: 10.1017/hpl.2018.59
    [34] Dorrer C, Wei S K H, Leung P, et al. High-damage-threshold static laser beam shaping using optically patterned liquid-crystal devices[J]. Optics Letters, 2011, 36(20): 4035-4037. doi: 10.1364/OL.36.004035
    [35] Cao Zhaoliang, Mu Quanquan, Hu Lifa, et al. The durability of a liquid crystal modulator for use with a high power laser[J]. Journal of Optics A: Pure and Applied Optics, 2007, 9(4): 427-430. doi: 10.1088/1464-4258/9/4/018
    [36] Watson E A, Whitaker B, Harris S. Initial high-power-CW-laser testing of liquid-crystal optical phased array[R]. Interim Reprort, 2005.
    [37] Zhu G, Whitehead D, Perrie W, et al. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications[J]. Journal of Physics D: Applied Physics, 2018, 51: 095603. doi: 10.1088/1361-6463/aaa948
    [38] Peng Liping, Zhao Yuanan, Liu Xiaofeng, et al. High-repetition-rate laser-induced damage of indium tin oxide films and polyimide films at a 1064 nm wavelength[J]. Optical Materials Express, 2019, 9(2): 911-922. doi: 10.1364/OME.9.000911
    [39] Peng Liping, Zhao Yuanan, Liu Xiaofeng, et al. Investigation on damage process of indium tin oxide film induced by 1064nm quasi-CW laser[C]//Proc of SPIE. 2019: 1106302.
    [40] Zhou Zhuangqi, Wang Xiangru, Zhuo Rusheng, et al. Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter[J]. Applied Physics B: Lasers and Optics, 2018, 124: 35. doi: 10.1007/s00340-018-6905-1
    [41] 王东. 基于纯相位液晶空间光调制器的激光束敏捷控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 9.

    Wang dong. Research on agility control technology of laser beam by using phase-only liquid crystal spatial light modulator[D]. Harbin: Harbin Institute of Technology. 2019: 9
    [42] He Xiaoxian, Wang Xiangru, Wu Liang, et al. Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering[J]. Optics Communications, 2017, 382: 437-443. doi: 10.1016/j.optcom.2016.08.020
    [43] Li J, Gauza S, Wu S T. Temperature effect on liquid crystal refractive indices[J]. Journal of Applied Physics, 2004, 96(1): 19-24. doi: 10.1063/1.1757034
    [44] Li J, Wu S T. Self-consistency of Vuks equations for liquid-crystal refractive indices[J]. Journal of Applied Physics, 2004, 96(11): 6253-6258. doi: 10.1063/1.1812356
    [45] 周庄奇. 高耐受功率液晶光学相控阵器件研究[D]. 成都: 电子科技大学, 2015: 61-63.

    Zhou Zhuangqi. Research on tolerance high laser power of liquid crystal optical phased array devices[D]. Chengdu: University of Electronic Science and Technology of China. 2015: 61-63
    [46] Gu D, Wen B, Mahajan M, et al. High power liquid crystal spatial light modulators[C]//Proc of SPIE. 2006: 630602.
  • 加载中
图(10)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  248
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-13
  • 修回日期:  2020-01-06
  • 发布日期:  2020-03-17

目录

    /

    返回文章
    返回