Application problems of liquid crystal phase modulators to high power lasers
-
摘要: 液晶相位调控器件在聚变点火、激光加工、光电对抗、激光雷达、激光通讯、激光防护等高功率激光领域有着非常广泛的应用及应用前景。但受限于构成器件材料自身抗激光损伤能力的限制以及缺乏对高功率激光辐照下液晶相位调控器件相位调控性能退化及损伤特性的系统研究,目前液晶相位调控器件的激光耐受力还难以满足高功率激光系统的应用和发展需求。为指导高激光耐受力液晶相位调控器件的制备工艺优化,对液晶相位调控器件在高峰值和高平均功率激光应用下出现的损伤现象以及性能退化进行了综述,最后对液晶相位调控器件激光耐受力提升方法做了总结和归纳。Abstract: The liquid crystal phase modulators (LCPMs) have applications and prospects in fusion ignition, laser processing, optoelectronic countermeasure, laser radar, laser communication, laser protection and so on. However, owing to the limited laser damage resistance of the materials constituting the LCPMs as well as insufficient system research on the laser damage and the phase modulation performance degradation of LCPMs induced by high power lasers, the laser handling power of LCPMs cannot satisfy the requirements of high power laser developments. To provide guidance for optimizing the fabrication process of LCPMs with high laser handling power, we reviewed the laser damage and the phase modulation performance degradation characteristics of LCPMs irradiated by high-peak-power lasers and high-average-power-lasers and then summarized the methods to improve the laser handling power of LCPMs.
-
图 6 连续激光辐照功率141 W/cm2 下降到133 W/cm2的过程中,偏光显微镜下观察到器件内部液晶材状态的变化[35]
Figure 6. Morphologies observed by the polarized light microscope for decrease in the laser power density from 141 W/cm2 to 133 W/cm2
-
[1] 李维諟, 郭强. 液晶显示应用技术[M]. 北京: 电子工业出版社, 2005.Li Weishi, Guo Qiang. Application technology of liquid crystal display[M]. Beijing: Publishing House of Electronics Industry, 2005 [2] 叶必卿. 液晶空间光调制器特性研究及在全息测量中的应用[D]. 杭州: 浙江大学, 2006.Ye Biqing. The Characteristics of liquid-crystal spatial light modulator and its application[D]. Hangzhou: Zhejiang University, 2006 [3] Beeckman J, Neyts K, Vanbrabant P J M. Liquid-crystal photonic applications[J]. Optical Engineering, 2011, 50: 081202. doi: 10.1117/1.3565046 [4] Cao Z, Mu Q, Hu L, et al. Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope[J]. Optics Express, 2009, 17(4): 2530-2537. doi: 10.1364/OE.17.002530 [5] Dayton D, Gonglewski J, Restaino S, et al. Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites[J]. Optics Express, 2002, 10(25): 1508-1519. doi: 10.1364/OE.10.001508 [6] Jacobs S D, Cerqua K A, Marshall K L, et al. Liquid-crystal laser optics-design, fabrication, and performance[J]. Journal of the Optical Society of America B: Optical Physics, 1988, 5(9): 1962-1979. doi: 10.1364/JOSAB.5.001962 [7] Marshall K L, Wei S K H, Vargas M, et al. Liquid crystal beam-shaping devices employing patterned photoalignment layers for high-peak-power laser applications[C]//Proc of SPIE. 2011: 81140P. [8] Heebner J, Borden M, Miller P, et al. Programmable beam spatial shaping system for the National Ignition Facility[C]//Proc of SPIE. 2011: 79160H. [9] 郑万国, 李平, 张锐, 等. 高功率激光装置光束精密调控性能研究进展[J]. 强激光与粒子束, 2020, 32:011003. (Zheng Wanguo, Li Ping, Zhang Rui, et al. Progress on laser precise control for high power laser facility[J]. High Power Laser and Particle Beams, 2020, 32: 011003 doi: 10.11884/HPLPB202032.190469 [10] Hayasaki Y, Sugimoto T, Takita A, et al. Variable holographic femtosecond laser processing by use of a spatial light modulator[J]. Applied Physics Letters, 2005, 87: 031103. doi: 10.1063/1.1994956 [11] Beck R J, Parry J P, MacPherson W N, et al. Application of cooled spatial light modulator for high power nanosecond laser micromachining[J]. Optics Express, 2010, 18(16): 17059-17065. doi: 10.1364/OE.18.017059 [12] 赵祥杰, 张大勇, 骆永全. 反射式液晶空间光调制器电控光束偏转[J]. 强激光与粒子束, 2012, 24(6):1324-1328. (Zhao Xiangjie, Zhang Dayong, Luo Yongquan. Electro-controllable optical beam deflection employing reflective liquid crystal spatial light modulator[J]. High Power Laser and Particle Beams, 2012, 24(6): 1324-1328 doi: 10.3788/HPLPB20122406.1324 [13] He Xiaoxian, Wang Xiangru, Wu Liang, et al. Aperture scalable liquid crystal optically duplicated array of phased array[J]. Optics Communications, 2019, 451: 174-180. doi: 10.1016/j.optcom.2019.06.037 [14] De La Tocnaye J L D. Engineering liquid crystals for optimal uses in optical communication systems[J]. Liquid Crystals, 2004, 31(2): 241-269. doi: 10.1080/02678290410001648570 [15] Buck J, Serati S, Hosting L, et al. Polarization gratings for non-mechanical beam steering applications[C]//Proc of SPIE. 2012: 83950F. [16] 肖锋. 液晶光学相控阵关键技术研究[D]. 成都: 电子科技大学, 2018: 3.Xiao Feng. Research on key technologies of the liquid crystal optical phased array[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 3 [17] McManamon P F, Dorschner T A, Corkum DL, et al. Optical phased array technology[C]//Proc of SPIE. 1996, 84(2): 268-298. [18] DorschneR T A. Adaptive photonic phased locked elements-an overview[R]. 2007. [19] Davis S R, Farca G, Rommel S D, et al. Analog, non-mechanical beam-steerer with 80 degree field of regard[C]//Proc of SPIE. 2008: 69710G. [20] Buck J, Serati S, Hosting L, et al. Polarization gratings for non-mechanical beam steering applications[C]//Proc of SPIE. 2012: 83950F. [21] Serati S, Hoy C L, Hosting L, et al. Large-aperture, wide-angle nonmechanical beam steering using polarization gratings[J]. Optical Engineering, 2017, 56(3): 031211. [22] Wang Ling. Self-activating liquid crystal devices for smart laser protection[J]. Liquid Crystals, 2016, 43(13-15): 2062-2078. doi: 10.1080/02678292.2016.1196506 [23] Schmid A, Papernov S, Li Z W, et al. Liquid-crystal materials for high peak-power laser applications[J]. Molecular Crystals and Liquid Crystals, 1991, 207: 33-42. doi: 10.1080/10587259108032085 [24] Vladimirov FL, Pletneva NI, Soms LN, et al. Laser-damage resistance of the liquid crystal modulators[J]. Molecular Crystals and Liquid Crystals Science and Technology Section A, 1998, 321: 213-221. doi: 10.1080/10587259808025088 [25] Marshall K L, Saulnier D, Xianyu H, et al. Liquid crystal near-IR laser beam shapers employing photoaddressable alignment layers for high-peak-power applications[C]//Proc of SPIE. 2013: 88280N. [26] Raszewski Z, Piecek W, Jaroszewicz L, et al. Transparent laser damage resistant nematic liquid crystal cell "LCNP3"[J]. Opto-Electronics Review, 2014, 22(3): 196-200. [27] Tuna O, Selamet Y, Aygun G, et al. High quality ITO thin films grown by DC and RF sputtering without oxygen[J]. Journal of Physics D: Applied Physics, 2010, 43(5). [28] Wang Haifeng, Huang Zhimeng, Zhang Dayong, et al. Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm[J]. Journal of Applied Physics, 2011, 110(11): 113111. doi: 10.1063/1.3665715 [29] Yoo J-H, Matthews M, Ramsey P, et al. Thermally ruggedized ITO transparent electrode films for high power optoelectronics[J]. Optics Express, 2017, 25(21): 25533-25545. doi: 10.1364/OE.25.025533 [30] Raszewski Z, Piecek W, Jaroszewicz L, et al. Laser damage resistant nematic liquid crystal cell[J]. Journal of Applied Physics, 2013, 114(5): 053104. doi: 10.1063/1.4816682 [31] Liu Xiaofeng, Peng Liping, Gao Yanqi, et al. Laser damage characteristics of indium-tin-oxide film and polyimide film[J]. Infrared Physics & Technology, 2019, 99: 80-85. [32] Marshall KL, Gan J, Mitchell G, et al. Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications[C]//Proc of SPIE. 2008: 70500L. [33] Xia Gang, Fan Wei, Huang Dajie, et al. High damage threshold liquid crystal binary mask for laser beam shaping[J]. High Power Laser Science and Engineering, 2019, 7: 1-6. doi: 10.1017/hpl.2018.59 [34] Dorrer C, Wei S K H, Leung P, et al. High-damage-threshold static laser beam shaping using optically patterned liquid-crystal devices[J]. Optics Letters, 2011, 36(20): 4035-4037. doi: 10.1364/OL.36.004035 [35] Cao Zhaoliang, Mu Quanquan, Hu Lifa, et al. The durability of a liquid crystal modulator for use with a high power laser[J]. Journal of Optics A: Pure and Applied Optics, 2007, 9(4): 427-430. doi: 10.1088/1464-4258/9/4/018 [36] Watson E A, Whitaker B, Harris S. Initial high-power-CW-laser testing of liquid-crystal optical phased array[R]. Interim Reprort, 2005. [37] Zhu G, Whitehead D, Perrie W, et al. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications[J]. Journal of Physics D: Applied Physics, 2018, 51: 095603. doi: 10.1088/1361-6463/aaa948 [38] Peng Liping, Zhao Yuanan, Liu Xiaofeng, et al. High-repetition-rate laser-induced damage of indium tin oxide films and polyimide films at a 1064 nm wavelength[J]. Optical Materials Express, 2019, 9(2): 911-922. doi: 10.1364/OME.9.000911 [39] Peng Liping, Zhao Yuanan, Liu Xiaofeng, et al. Investigation on damage process of indium tin oxide film induced by 1064nm quasi-CW laser[C]//Proc of SPIE. 2019: 1106302. [40] Zhou Zhuangqi, Wang Xiangru, Zhuo Rusheng, et al. Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter[J]. Applied Physics B: Lasers and Optics, 2018, 124: 35. doi: 10.1007/s00340-018-6905-1 [41] 王东. 基于纯相位液晶空间光调制器的激光束敏捷控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 9.Wang dong. Research on agility control technology of laser beam by using phase-only liquid crystal spatial light modulator[D]. Harbin: Harbin Institute of Technology. 2019: 9 [42] He Xiaoxian, Wang Xiangru, Wu Liang, et al. Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering[J]. Optics Communications, 2017, 382: 437-443. doi: 10.1016/j.optcom.2016.08.020 [43] Li J, Gauza S, Wu S T. Temperature effect on liquid crystal refractive indices[J]. Journal of Applied Physics, 2004, 96(1): 19-24. doi: 10.1063/1.1757034 [44] Li J, Wu S T. Self-consistency of Vuks equations for liquid-crystal refractive indices[J]. Journal of Applied Physics, 2004, 96(11): 6253-6258. doi: 10.1063/1.1812356 [45] 周庄奇. 高耐受功率液晶光学相控阵器件研究[D]. 成都: 电子科技大学, 2015: 61-63.Zhou Zhuangqi. Research on tolerance high laser power of liquid crystal optical phased array devices[D]. Chengdu: University of Electronic Science and Technology of China. 2015: 61-63 [46] Gu D, Wen B, Mahajan M, et al. High power liquid crystal spatial light modulators[C]//Proc of SPIE. 2006: 630602.