留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池负极材料多孔硅/硅铁合金的制备及性能

于志辉 刘丹丹 寇艳娜

于志辉, 刘丹丹, 寇艳娜. 锂离子电池负极材料多孔硅/硅铁合金的制备及性能[J]. 机械工程学报, 2017, 43(2): 278-284. doi: 10.11936/bjutxb2016010005
引用本文: 于志辉, 刘丹丹, 寇艳娜. 锂离子电池负极材料多孔硅/硅铁合金的制备及性能[J]. 机械工程学报, 2017, 43(2): 278-284. doi: 10.11936/bjutxb2016010005
YU Zhihui, LIU Dandan, KOU Yanna. Preparation and Pproperties of Si/Si-Fe Alloy Porous Composite as Anode Material in Lithium-ion Battery[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 278-284. doi: 10.11936/bjutxb2016010005
Citation: YU Zhihui, LIU Dandan, KOU Yanna. Preparation and Pproperties of Si/Si-Fe Alloy Porous Composite as Anode Material in Lithium-ion Battery[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 278-284. doi: 10.11936/bjutxb2016010005

锂离子电池负极材料多孔硅/硅铁合金的制备及性能

doi: 10.11936/bjutxb2016010005
基金项目: 国家“863”计划资助项目(2012AA052201);北京市教育委员会科研计划面上资助项目(KM201210005008);北京市教育委员会科技发展计划重点资助项目(KZ201310005001)
详细信息
    作者简介:

    作者简介: 于志辉(1961—), 女, 教授, 主要从事电化学方面的研究, E-mail:yuzhihui@bjut.edu.cn

  • 中图分类号: O646

Preparation and Pproperties of Si/Si-Fe Alloy Porous Composite as Anode Material in Lithium-ion Battery

  • 摘要: 为改善锂离子电池硅负极材料的电化学性能,利用镁热还原法制备了不同铁掺杂量的多孔硅/硅铁合金复合材料,并对其结构以及在锂离子电池中的充放电性能进行了研究. 材料均呈现多孔结构,硅铁合金均匀分布在孔道内部. 多孔硅/硅铁合金复合材料具有较好的循环稳定性,在0.1C倍率下循环100圈后可逆容量为1133.5mA·h/g,容量保持率为66%;在1C倍率下可逆容量仍可以达到776.9mA·h/g.

     

  • 图  硅铁合金复合材料的X射线衍射图谱(右图为25°~60°区间的放大图)

    Figure  1.  XRD patterns for the samples p-FexSi (the right pattern is the magnification of 25° to 60°)

    图  样品p-Si、p-Fe0.04Si、p-Fe0.05Si、p-Fe0.1Si的SEM图

    Figure  2.  SEM for p-Si, p-Fe0.04Si,p-Fe0.05Si,p-Fe0.1Si

    图  样品p-Si、p-Fe0.05Si的TEM图及p-Fe0.05Si的eds图谱

    Figure  3.  TEM for p-Si, p-Fe0.05Si and energy spectrum analysis diagram for sample p-Fe0.05Si

    图  不同铁掺杂量的多孔硅基材料的充放电曲线

    Figure  4.  Discharge/charge curves of the p-FexSi

    图  p-Fe0.05Si的循环伏安曲线

    Figure  5.  Cyclic voltammetry of the p-Fe0.05Si

    图  不同铁掺杂量的多孔硅基材料的循环性能

    Figure  6.  Cyclic performances of the p-FexSi at current density 420mA/g

    图  p-Si、p-Fe0.05Si材料的倍率性能

    Figure  7.  Rate performance of p-Si、p-Fe0.05Si

    表  1  硅铁合金复合材料在0.1C倍率420mA/g电流密度下的循环性能

    Table  1.   Form about cyclic performances of the p-FexSi alloy composite electrodes at current density 420mA/g (0.1C)

    样品 首次放电容量/(mA·h·g-1) 首次充电容量/(mA·h·g-1) 首次库伦效率/% 循环100圈后可逆容量/(mA·h·g-1) 循环100圈后的容量保持率/%
    A 2998.33 1503.3 50.1 845.5 56.2
    B 2487.52 1555.7 62.5 961.8 61.8
    C 2641.33 1716.7 65.0 1133.5 66.0
    D 1883.54 1003.7 53.2 533.2 53.1
    E 1649.98 889.2 53.9 471.5 53.0
    注:样品A是P-Si,样品B是p-Fe0.04Si,样品C是p-Fe0.05Si,样品D是p-Fe0.067Si,样品E是p-Fe0.1Si.
    下载: 导出CSV
  • [1] QI P, ZHU D, CHEN Y G.Electrochemical performances of Si/graphite/carbon composites as anode materials for lithium-ion batteries[J]. Journal of Functional Materials, 2012, 43(5): 657-659. (in Chinese)
    [2] AUGUSTYN V, SIMON P, DUNN B.Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597.
    [3] GWON H, HONG J, KIM H, et al.Recent progress on flexible lithium rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 538.
    [4] GORIPARTI S, MIELE E, DE ANGELIS F, et al.Review on recent progress of nanostructured anode materials for Li-ion batteries[J]. Journal of Power Sources, 2014, 257: 421-433.
    [5] LI M, HOU X H, WANG J, et al.Fabrication and electrochemical performance of core-shell silicon graphite composite anode material based on graphite matrix[J]. Journal of Functional Materials, 2013, 44(19): 2828-2832. (in Chinese)
    [6] TERRANOVA M L, ORLANDUCCI S, TAMBURRI E, et al.Si/C hybrid nanostructures for Li-ion anodes: an overview[J]. Journal of Power Sources, 2014, 246: 167-77.
    [7] ZHANG L, JIANG X Y, ZHANG R.Research of Si anode for lithium-ion batteries prepared by mechanical alloying method[J]. Journal of Functional Materials, 2012, 43(19): 2638-2646. (in Chinese)
    [8] THABETHE S, LINGANISO E, MOTAUNG D, et al.Visible and IR photoluminescence of c-FeSi@a-Si core-shell nano-fibres produced by vapour transport[J]. Journal of Luminescence, 2013, 143: 113-119.
    [9] LI Z, MO L, KATHIRASER Y, et al.Yolk-Satellite-Shell structured Ni-Yolk@Ni@SiO2 nanocomposite: superb catalyst toward methane CO2 reforming reaction[J]. ACS Catalysis, 2014, 4(5): 1526-1536.
    [10] PARK M S, RAJENDRAN S, KANG Y M, et al.Si-Ni alloy-graphite composite synthesized by arc-melting and high-energy mechanical milling for use as an anode in lithium-ion batteries[J]. Journal of Power Sources, 2006, 158(1): 650-653.
    [11] SUN L, WANG X, SUSANTYOKO R A, et al.Copper-silicon core-shell nanotube arrays for free-standing lithium ion battery anodes[J]. Journal of Materials Chemistry A, 2014, 2(37): 15294.
    [12] MURUGESAN S, HARRIS J T, KORGEL B A, et al.Copper-coated amorphous silicon particles as an anode material for lithium-ion batteries[J]. Chemistry of Materials, 2012, 24(7): 1306-1315.
    [13] CHEN Y, QIAN J, CAO Y, et al.Green synthesis and stable Li-storage performance of FeSi2/Si@C nanocomposite for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2012, 4(7): 3753-3758.
    [14] LEE K M, LEE Y S, KIM Y W, et al.Electrochemical characterization of Ti-Si and Ti-Si-Al alloy anodes for Li-ion batteries produced by mechanical ball milling[J]. Journal of Alloys and Compounds, 2009, 472(1/2): 461-465.
    [15] GUO S, LI H, BAI H, et al.Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries[J]. Journal of Power Sources, 2014, 248: 1141-1148.
    [16] DU F H, LI B, FU W, et al.Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability[J]. Advanced Materials, 2014, 26(35): 6145-6150.
    [17] JO M R, HEO Y U, LEE Y C, et al.A nano-Si/FeSi2Ti hetero-structure with structural stability for highly reversible lithium storage[J]. Nanoscale, 2014, 6(2): 1005-1010.
    [18] CHEN Y, QIAN J, CAO Y, et al.Green synthesis and stable li-storage performance of FeSi(2)/Si@C nanocomposite for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2012, 4(7): 3753-3758.
    [19] LI W, TANG Y, KANG W, et al.Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes[J]. Small, 2015, 11(11): 1345-1351.
    [20] PARK H, LEE S, YOO S, et al.Control of interfacial layers for high-performance porous Si lithium-ion battery anode[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16360-16367.
    [21] HAN H K, LOKA C, YANG Y M, et al.High capacity retention Si/silicide nanocomposite anode materials fabricated by high-energy mechanical milling for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2015, 281: 293-300.
    [22] GE M, RONG J, FANG X, et al.Porous doped silicon nanowires for lithium ion battery anode with long cycle life[J]. Nano Letters, 2012, 12(5): 2318-2323.
    [23] CHAN C K, PENG H, LIU G, et al.High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35.
    [24] ZHANG C L, YE X H, REN C Y, et al.The study of fluoroethylene carbonate as an additive of electrolyte solution[J]. Guangzhou Chemical Industry, 2013, 41(8): 91-93. (in Chinese)
    [25] LI C, ZHANG P, JIANG Z.Effect of nano Cu coating on porous Si prepared by acid etching Al-Si alloy powder[J]. Electrochimica Acta, 2015, 161: 408-412.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  57
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-05
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回