Preparation and Pproperties of Si/Si-Fe Alloy Porous Composite as Anode Material in Lithium-ion Battery
-
摘要: 为改善锂离子电池硅负极材料的电化学性能,利用镁热还原法制备了不同铁掺杂量的多孔硅/硅铁合金复合材料,并对其结构以及在锂离子电池中的充放电性能进行了研究. 材料均呈现多孔结构,硅铁合金均匀分布在孔道内部. 多孔硅/硅铁合金复合材料具有较好的循环稳定性,在0.1C倍率下循环100圈后可逆容量为1133.5mA·h/g,容量保持率为66%;在1C倍率下可逆容量仍可以达到776.9mA·h/g.Abstract: In order to modify the electrochemical properties of Si anode for lithium ion batteries, a series of porous Si/Si-Fe alloy composites with different amounts of Fe doping were prepared by magnesium reduction process. The morphology and microstructure of the as-prepared composites were investigated. The electrochemical performance of the composites as anode materials for lithium-ion batteries were evaluated by galvanostatical charge-discharge testing.The composites show a porous structure with the uniform distribution of Si-Fe alloy inside the pores and possess remarkable cycle stability with a capacity of 1133.5mA·h/g at 0.1C after 100 cycles, a capacity retention ratio of 66% and a reversible capacity of 776.9mA·h/g at 1C.
-
Key words:
- lithium-ion battery /
- porous structure /
- Si-Fe alloy /
- cycle stability
-
表 1 硅铁合金复合材料在0.1C倍率420mA/g电流密度下的循环性能
Table 1. Form about cyclic performances of the p-FexSi alloy composite electrodes at current density 420mA/g (0.1C)
样品 首次放电容量/(mA·h·g-1) 首次充电容量/(mA·h·g-1) 首次库伦效率/% 循环100圈后可逆容量/(mA·h·g-1) 循环100圈后的容量保持率/% A 2998.33 1503.3 50.1 845.5 56.2 B 2487.52 1555.7 62.5 961.8 61.8 C 2641.33 1716.7 65.0 1133.5 66.0 D 1883.54 1003.7 53.2 533.2 53.1 E 1649.98 889.2 53.9 471.5 53.0 注:样品A是P-Si,样品B是p-Fe0.04Si,样品C是p-Fe0.05Si,样品D是p-Fe0.067Si,样品E是p-Fe0.1Si. -
[1] QI P, ZHU D, CHEN Y G.Electrochemical performances of Si/graphite/carbon composites as anode materials for lithium-ion batteries[J]. Journal of Functional Materials, 2012, 43(5): 657-659. (in Chinese) [2] AUGUSTYN V, SIMON P, DUNN B.Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597. [3] GWON H, HONG J, KIM H, et al.Recent progress on flexible lithium rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 538. [4] GORIPARTI S, MIELE E, DE ANGELIS F, et al.Review on recent progress of nanostructured anode materials for Li-ion batteries[J]. Journal of Power Sources, 2014, 257: 421-433. [5] LI M, HOU X H, WANG J, et al.Fabrication and electrochemical performance of core-shell silicon graphite composite anode material based on graphite matrix[J]. Journal of Functional Materials, 2013, 44(19): 2828-2832. (in Chinese) [6] TERRANOVA M L, ORLANDUCCI S, TAMBURRI E, et al.Si/C hybrid nanostructures for Li-ion anodes: an overview[J]. Journal of Power Sources, 2014, 246: 167-77. [7] ZHANG L, JIANG X Y, ZHANG R.Research of Si anode for lithium-ion batteries prepared by mechanical alloying method[J]. Journal of Functional Materials, 2012, 43(19): 2638-2646. (in Chinese) [8] THABETHE S, LINGANISO E, MOTAUNG D, et al.Visible and IR photoluminescence of c-FeSi@a-Si core-shell nano-fibres produced by vapour transport[J]. Journal of Luminescence, 2013, 143: 113-119. [9] LI Z, MO L, KATHIRASER Y, et al.Yolk-Satellite-Shell structured Ni-Yolk@Ni@SiO2 nanocomposite: superb catalyst toward methane CO2 reforming reaction[J]. ACS Catalysis, 2014, 4(5): 1526-1536. [10] PARK M S, RAJENDRAN S, KANG Y M, et al.Si-Ni alloy-graphite composite synthesized by arc-melting and high-energy mechanical milling for use as an anode in lithium-ion batteries[J]. Journal of Power Sources, 2006, 158(1): 650-653. [11] SUN L, WANG X, SUSANTYOKO R A, et al.Copper-silicon core-shell nanotube arrays for free-standing lithium ion battery anodes[J]. Journal of Materials Chemistry A, 2014, 2(37): 15294. [12] MURUGESAN S, HARRIS J T, KORGEL B A, et al.Copper-coated amorphous silicon particles as an anode material for lithium-ion batteries[J]. Chemistry of Materials, 2012, 24(7): 1306-1315. [13] CHEN Y, QIAN J, CAO Y, et al.Green synthesis and stable Li-storage performance of FeSi2/Si@C nanocomposite for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2012, 4(7): 3753-3758. [14] LEE K M, LEE Y S, KIM Y W, et al.Electrochemical characterization of Ti-Si and Ti-Si-Al alloy anodes for Li-ion batteries produced by mechanical ball milling[J]. Journal of Alloys and Compounds, 2009, 472(1/2): 461-465. [15] GUO S, LI H, BAI H, et al.Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries[J]. Journal of Power Sources, 2014, 248: 1141-1148. [16] DU F H, LI B, FU W, et al.Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability[J]. Advanced Materials, 2014, 26(35): 6145-6150. [17] JO M R, HEO Y U, LEE Y C, et al.A nano-Si/FeSi2Ti hetero-structure with structural stability for highly reversible lithium storage[J]. Nanoscale, 2014, 6(2): 1005-1010. [18] CHEN Y, QIAN J, CAO Y, et al.Green synthesis and stable li-storage performance of FeSi(2)/Si@C nanocomposite for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2012, 4(7): 3753-3758. [19] LI W, TANG Y, KANG W, et al.Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes[J]. Small, 2015, 11(11): 1345-1351. [20] PARK H, LEE S, YOO S, et al.Control of interfacial layers for high-performance porous Si lithium-ion battery anode[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16360-16367. [21] HAN H K, LOKA C, YANG Y M, et al.High capacity retention Si/silicide nanocomposite anode materials fabricated by high-energy mechanical milling for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2015, 281: 293-300. [22] GE M, RONG J, FANG X, et al.Porous doped silicon nanowires for lithium ion battery anode with long cycle life[J]. Nano Letters, 2012, 12(5): 2318-2323. [23] CHAN C K, PENG H, LIU G, et al.High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35. [24] ZHANG C L, YE X H, REN C Y, et al.The study of fluoroethylene carbonate as an additive of electrolyte solution[J]. Guangzhou Chemical Industry, 2013, 41(8): 91-93. (in Chinese) [25] LI C, ZHANG P, JIANG Z.Effect of nano Cu coating on porous Si prepared by acid etching Al-Si alloy powder[J]. Electrochimica Acta, 2015, 161: 408-412.