留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同含水率下污泥流变模型的显著性水平分析

曹秀芹 尹伟齐 赵振东

曹秀芹, 尹伟齐, 赵振东. 不同含水率下污泥流变模型的显著性水平分析[J]. 机械工程学报, 2017, 43(1): 150-157. doi: 10.11936/bjutxb2016020015
引用本文: 曹秀芹, 尹伟齐, 赵振东. 不同含水率下污泥流变模型的显著性水平分析[J]. 机械工程学报, 2017, 43(1): 150-157. doi: 10.11936/bjutxb2016020015
CAO Xiuqin, YIN Weiqi, ZHAO Zhendong. Analysis of the Significant Level of Sludge Rheological Models With Different Moisture Contents[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 150-157. doi: 10.11936/bjutxb2016020015
Citation: CAO Xiuqin, YIN Weiqi, ZHAO Zhendong. Analysis of the Significant Level of Sludge Rheological Models With Different Moisture Contents[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 150-157. doi: 10.11936/bjutxb2016020015

不同含水率下污泥流变模型的显著性水平分析

doi: 10.11936/bjutxb2016020015
基金项目: 北京市自然科学基金资助项目(KZ201310016017);北京建筑大学科研基地建设-科技创新平台资助项目(PXM2014014210000057)
详细信息
    作者简介:

    作者简介: 曹秀芹(1965—), 女, 教授, 主要从事废水处理理论技术、污泥及固体废弃物减量与资源化技术方面的研究, E-mail:caoxiuqin@bucea.edu.cn

  • 中图分类号: U461;TP308

Analysis of the Significant Level of Sludge Rheological Models With Different Moisture Contents

  • 摘要: 典型的非牛顿流体流变模型有7种,为给出相对最优模型,结合污泥对流变模型进行显著性水平分析. 采用旋转黏度计在20℃时对含水率为93.99%~98.72%的污泥进行流变实验,分析其流变特性,并对这7种流变模型进行拟合和白噪声检验,验证其有效性. 结果表明:在低剪切速率0~150s-1时,含水率对污泥黏度的影响更大. 其中含水率为96.31%~98.72%的污泥表观黏度在0.5Pa·s以下,适合于远距离运输,而含水率93.99%~95.52%的污泥表观黏度偏大,不适合于远距离运输. 含水率为93.99%~95.52%时,两参数模型中,Power-law模型的显著性水平较高,优于其他两参数流变模型;含水率为93.99%~98.72%时,三参数模型中,流变模型Sisko优于H-B模型,四参数模型中,流变模型Carreau优于Cross模型.

     

  • 图  HAAKE Viscotester-550型旋转黏度计与转子结构

    Figure  1.  Rheological experimental platform of HAAKE Viscotester-550 rotary viscometer and rotor structure

    图  剪切应力随剪切速率的变化

    Figure  2.  Variation of shear stress along with shear rate

    图  黏度随剪切速率的变化

    Figure  3.  Variation of viscosity along with shear rate

    图  Power-law模型的残差序列的自相关与偏自相关函数

    Figure  4.  Autocorrelation function(ACF) and partial autocorrelation function (PACF)of residual Sequence in Power-law model

    图  Power-law模型的残差序列

    Figure  5.  Residual sequence of Power-law model

    表  1  7种非牛顿流体模型及其数学表达式

    Table  1.   Seven non-Newtonian fluid models and their mathematical equations

    流变模型 模型表达式
    Power-law τ=kγn
    Bingham τ=τ0pγ
    Casson τ0.5=τ00.5+μ0.5γ0.5
    H-B τ=τ0+kγn
    Sisko μ=μ+kγn-1
    Cross μ-μμ0-μ=11+(λγ)m
    Carreau μ-μμ0-μ=1(λγ)2]n-12
    下载: 导出CSV

    表  2  20℃时Matlab对不同含水率下污泥流变模型的拟合

    Table  2.   Fitting of the rheological models of the sludge with different water contents at 20℃ by Matlab

    模型 含水率/% 流变参数 R2
    Power-law k n
    98.72 0.0199 0.8032 0.8803
    97.90 0.5663 0.3920 0.9792
    97.37 0.5390 0.4609 0.9196
    96.31 1.4650 0.4256 0.9849
    95.52 11.7000 0.2478 0.9891
    93.99 24.3300 0.2678 0.9767
    Bingham τ0 μp
    98.72 0.2887 0.0055 0.9028
    97.90 2.2356 0.0102 0.9639
    97.37 2.6910 0.0159 0.9441
    96.31 6.4850 0.0336 0.9752
    95.52 28.2200 0.0662 0.9378
    93.99 62.9400 0.1635 0.9214
    Casson τ0 μ
    98.72 0.0681 0.0043 0.8913
    97.90 1.3972 0.0042 0.9841
    97.37 1.5090 0.0075 0.9425
    96.31 3.8350 0.0149 0.9916
    95.52 21.2410 0.0182 0.9825
    93.99 46.1700 0.0483 0.9644
    H-B τ0 k n
    98.72 0.4670 0.0009 1.3066 0.9114
    97.90 1.1542 0.1605 0.5703 0.9846
    97.37 2.4070 0.0322 0.8865 0.9454
    96.31 3.6350 0.3675 0.6249 0.9922
    95.52 12.9500 4.0150 0.3807 0.9933
    93.99 14.9300 15.2500 0.3248 0.9778
    Sisko k μ n
    98.72 0.3329 0.0042 0.0871 0.9588
    97.90 0.5411 0.0068 0.2786 0.9957
    97.37 1.3510 0.0085 0.2191 0.9957
    96.31 1.9270 0.0089 0.3771 0.9909
    95.52 13.1500 0.0492 0.1208 0.9993
    93.99 37.2800 0.1046 0.1244 0.9990
    Cross μ0 μ λ m
    98.72 0.1718 0.0058 0.2756 1.1070 0.9594
    97.90 0.2005 0.0123 0.0501 1.2889 0.9961
    97.37 0.9529 0.0138 0.3382 0.9638 0.9964
    96.31 0.7860 0.0385 0.0768 1.1890 0.9974
    95.52 5.3630 0.0822 0.1410 1.1090 0.9990
    93.99 11.9500 0.1755 0.1585 1.0716 0.9995
    Carreau μ0 μ λ n
    98.72 0.1490 0.0043 0.3637 0.0549 0.9587
    97.90 0.1777 0.0097 0.0707 0.0060 0.9976
    97.37 0.5138 0.0119 0.2317 0.1304 0.9962
    96.31 0.6388 0.0326 0.0951 0.0263 0.9983
    95.52 3.7100 0.0655 0.1362 0.0251 0.9994
    93.99 7.9150 0.1396 0.1453 0.0552 0.9998
    下载: 导出CSV

    表  3  Power-law模型残差序列的白噪声检验

    Table  3.   White noise test of Power-law model residual series

    延迟阶数 指标 延迟阶数 指标
    Q-Stat Prob Q-Stat Prob
    1 2.33 0.13 13 7.55 0.87
    2 3.94 0.14 14 8.93 0.84
    3 4.96 0.17 15 9.55 0.86
    4 5.93 0.21 16 10.22 0.89
    5 6.59 0.25 17 10.25 0.90
    6 6.97 0.32 18 10.81 0.89
    7 7.25 0.40 19 11.69 0.90
    8 7.37 0.50 20 12.07 0.89
    9 7.38 0.60 21 12.83 0.91
    10 7.40 0.69 22 13.89 0.90
    11 7.47 0.76 23 14.85 0.90
    12 7.53 0.82 24 15.72 0.89
    下载: 导出CSV

    表  4  含水率93.99%下不同流变模型的AIC与SBC值

    Table  4.   AIC and SBC values of different rheological models with the moisture content of 93.99%

    模型 参数个数 AIC SBC
    Power-law 125.37 137.40
    Bingham 2 193.35 205.38
    Casson 149.83 161.86
    Sisko 3 -214.54 -208.52
    H-B 123.77 131.80
    Cross 4 -429.13 -421.42
    Carreau -472.13 -478.13
    下载: 导出CSV
  • [1] ZHAO M, WU G F, LI G.Approach and analysis of sludge resource utilization[J]. Environmental Science and Technology, 2005, 28(2): 92-94. (in Chinese)
    [2] CINAR S, ONAY T T, ERDINCLER A.Co-disposal alternatives of various municipal wastewater treatment-plant sludges with refuse[J]. Advances in Environmental Research, 2004, 8(3/4): 477-482.
    [3] HUANG H X, CHEN H P, CAI X F.Study on the rheologicalproperties of municipal sludge and thenumerical simulation of circular pipe flow[J]. Journal of Environmental Engineering, 2012(12): 4642-4648. (in Chinese)
    [4] ZHANG X Y, YUAN Y X, WU Y B.Study on rheological properties of activated sludge in wastewater treatment process[J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition), 2008, 40(3): 388-392. (in Chinese)
    [5] BAROUTIAN S, ESHTIAGHI N, GAPES D J.Rheology of a primary and secondary sewage sludge mixture: dependency on temperatureand solid concentration[J]. Bioresource Technology, 2013, 140(3): 227-233.
    [6] SEYSSIECQ I, FERRASSE J H, ROCHE N.State-of-the-art: rheological characterization of wastewater treatment sludge[J]. Biochemical Engineering Journal, 2003, 16(1): 41-56.
    [7] ZHANG X B, FENG M Q, SUN X H, et al.Effects of temperature and concentration on the rheological properties of sludge[J]. Water Dynamics Research and Development, 2014, 29(2): 143-149. (in Chinese)
    [8] RATKOVICH N, HORN W F, HELMUS F P, et al.Activated sludge rheology: a critical review on data collection and modelling[J]. Water Research, 2013, 47(2): 463-482.
    [9] ABU-ORF M M, DENTEL S K. Rheology as tool for polymer dose assessment and control[J]. Journal of Environmental Engineering, 1999, 125(12): 1133-1141.
    [10] DENTEL S K, ABU-ORF M M, WALKER C A. Optimization of slurry flocculation and dewatering based on electrokinetic and rheological phenomena[J]. Chemical Engineering Journal, 2000, 80(1/2/3): 65-72.
    [11] PROFF E A, LOHMANN J H.Calculation of pressure drop in the tube flow of sewage sludges with the aid of flow curves[J]. Water Science and Technology, 1997, 36: 27-32.
    [12] YANG F, BICK A, SHANDALOV S.et al.Yield stress and rheological characteristics of activated sludge in an airlift membrane bioreactor[J]. Journal of Membrane Science, 2009, 334(1): 83-90.
    [13] SHAO L H, GUO T, SHI Y, et al.Research progress of centrifugal treatment technology of oily sludge[J]. Contemporary Chemical Industry, 2014(2): 263-266. (in Chinese)
    [14] LU H, YIN J, YUAN Y X, et al.Analysis of factors affecting the resistance of sludge pipeline transportation[J]. Journal of Harbin Institute of Technology, 2013, 45(6): 29-32. (in Chinese)
    [15] TANG X M.Experimental study on the pumping and rheological properties of high concentration viscous materials[D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
    [16] LIU X H.Study on rheological behavior of paste and its flow resistance characteristics[D]. Beijing: University of Science and Technology Beijing, 2015. (in Chinese)
    [17] MA J L, HU X M.White noise test of semi parametric additive measurement error model[J]. System Science and Mathematics, 2014(8): 992-1002. (in Chinese)
    [18] CHEN T, ZOU G H, ZHANG X Y.Sensitivity analysis of linear mixed effects model for predicting white noise deviation[J]. Mathematical Statistics and Management. 2008, 27(5): 869-880. (in Chinese)
    [19] PENG G H, WEI B L, MA J Q.The application of time series model and run the coupled wavelet in the precipitation forecast based on[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(8): 18-22. (in Chinese)
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  50
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-24
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2017-01-01

目录

    /

    返回文章
    返回