留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿质混合料性能对沥青混合料动态模量的影响

苗英豪 郑晓恒 王文涛

苗英豪, 郑晓恒, 王文涛. 矿质混合料性能对沥青混合料动态模量的影响[J]. 机械工程学报, 2017, 43(1): 127-134. doi: 10.11936/bjutxb2016040043
引用本文: 苗英豪, 郑晓恒, 王文涛. 矿质混合料性能对沥青混合料动态模量的影响[J]. 机械工程学报, 2017, 43(1): 127-134. doi: 10.11936/bjutxb2016040043
MIAO Yinghao, ZHENG Xiaoheng, WANG Wentao. Influence of Mineral Mixture Performance on Dynamic Modulus of Hot Mix Asphalt[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 127-134. doi: 10.11936/bjutxb2016040043
Citation: MIAO Yinghao, ZHENG Xiaoheng, WANG Wentao. Influence of Mineral Mixture Performance on Dynamic Modulus of Hot Mix Asphalt[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 127-134. doi: 10.11936/bjutxb2016040043

矿质混合料性能对沥青混合料动态模量的影响

doi: 10.11936/bjutxb2016040043
基金项目: 国家自然科学基金项目资助(51178013)
详细信息
    作者简介:

    作者简介: 苗英豪(1975—), 男, 副教授, 主要从事道路工程方面的研究, E-mail:miaoyinghao@bjut.edu.cn

  • 中图分类号: U416.2

Influence of Mineral Mixture Performance on Dynamic Modulus of Hot Mix Asphalt

  • 摘要: 为了解决沥青混合料高温性能不足的问题,研究了矿质混合料性能对沥青混合料动态模量的影响. 以AC-20C型沥青混合料为背景,根据贝雷法3个参数进行了矿质混合料配合比正交试验设计,得到9种不同的矿质混合料级配,并以加州承载比(California bearing ratio,CBR)和振实间隙率为指标,对矿质混合料性能进行了评价,从中选出矿质混合料性能差异明显的3种级配,进行了沥青混合料的配合比设计. 进而在不同温度和加载频率条件下,开展了3种级配沥青混合料的动态模量试验. 依据试验结果,分析了矿质混合料性能对沥青混合料动态模量的影响. 研究表明:高温条件下矿质混合料性能对沥青混合料的动态模量有较大影响,低温时矿质混合料性能对动态模量的影响不明显. 通过优化矿质混合料性能,可以显著改善沥青混合料的高温性能. 具有较高CBR值和较低振实间隙率的矿质混合料,对应的沥青混合料具有较好的高温性能.

     

  • 图  9个级配的级配曲线

    Figure  1.  Gradation curves of the 9 mixture

    图  贝雷法3参数对CBR值和VVA值的影响

    Figure  2.  Influence of the 3 Bailey parameters on CBR and VVA

    图  5℃时沥青混合料的动态模量和相位角

    Figure  3.  Dynamic modulus and the phase angle of the HMA at 5℃

    图  50℃时沥青混合料的动态模量和车辙因子

    Figure  4.  Dynamic modulus and the rutting factor of the HMAs at 50℃

    图  CBR、VVA对50℃时10Hz加载频率下动态模量的影响

    Figure  5.  Influence of CBR and VVA on the dynamic modulus at 50℃ and 10Hz

    图  CBR、VVA对50℃时1Hz加载频率下动态模量的影响

    Figure  6.  Influence of CBR and VVA on the dynamic modulus at 50℃ and 0.1Hz

    图  CA对动态模量的影响

    Figure  7.  Influence of CA on the dynamic modulus

    表  1  贝雷法参数和正交设计水平

    Table  1.   Factors and levels for orthogonal design

    水平 贝雷法参数
    CA FAc FAf
    1 0.450 0.480 0.450
    2 0.600 0.515 0.485
    3 0.750 0.550 0.520
    注:CA表征的是粗集料内部比例组成;FAc表征的是合成集料中最细一级的嵌挤情况;FAc表征的是细集料中粗料部分与细料部分的嵌挤、填充情况.
    下载: 导出CSV

    表  2  贝雷法3个参数的正交设计值和方案的实际值

    Table  2.   Designed and actual combinations of the 3 factors

    级配编号 正交设计值 实际值
    CA FAc FAf CA FAc FAf
    G1 0.450 0.480 0.450 0.4504 0.4805 0.4504
    G2 0.450 0.515 0.485 0.4509 0.5158 0.4860
    G3 0.450 0.550 0.520 0.4500 0.5499 0.5196
    G4 0.600 0.480 0.485 0.6007 0.4809 0.4854
    G5 0.600 0.515 0.520 0.6006 0.5156 0.5196
    G6 0.600 0.550 0.450 0.6003 0.5494 0.4494
    G7 0.750 0.480 0.520 0.7503 0.4795 0.5199
    G8 0.750 0.515 0.450 0.7498 0.5144 0.4497
    G9 0.750 0.550 0.485 0.7506 0.5492 0.4847
    下载: 导出CSV

    表  3  CBR和振实间隙率的试验结果

    Table  3.   Test results of CBR and VVA

    指标 级配
    G1 G2 G3 G4 G5 G6 G7 G8 G9
    CBR/% 42.92 75.30 75.09 43.06 45.42 43.83 37.14 34.71 55.32
    VVA/% 28.30 27.99 29.45 28.19 30.73 29.59 30.03 31.12 28.65
    注:VVA为矿料振实间隙率,由矿料振实密度和合成毛体积密度决定.
    下载: 导出CSV

    表  4  矿质混合料的CBR和VVA试验结果极差分析

    Table  4.   Range analysis of CBR and VVA

    水平 CBR/% VVA/%
    CA FAc FAf CA FAc FAf
    1 64.446 41.048 40.496 28.580 28.841 29.673
    2 44.104 51.811 57.893 29.504 29.944 28.275
    3 42.387 58.079 52.549 29.932 29.230 30.067
    下载: 导出CSV

    表  5  CBR的方差分析

    Table  5.   Variance analysis of CBR

    方差来源 偏差平方和 自由度 平均偏差平方和 F
    CA 903.16 2 451.58 32.03
    FAc 444.93 2 222.46 15.78
    FAf 476.63 2 238.31 16.91
    误差 28.19 2 14.10
    总和 1852.90 8
    下载: 导出CSV

    表  6  VVA的方差分析

    Table  6.   Variance analysis of VVA

    方差来源 偏差平方和 自由度 平均偏差平方和 F
    CA 2.87 2 1.43 10.19
    FAc 1.88 2 0.94 6.68
    FAf 5.32 2 2.66 18.92
    误差 0.28 2 0.14
    总和 10.34 8
    下载: 导出CSV

    表  7  3种选定级配集料通过百分率

    Table  7.   Three gradations slected aggregate rate through each sieve%

    级配 26.5 19 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075
    G2 100 92.74 83.08 71.03 57.05 37.69 27.54 19.44 14.19 9.45 7.48 5.99
    G6 100 93.91 85.62 75.24 63.13 41.00 32.42 22.53 16.01 10.12 7.75 6.01
    G8 100 90.67 82.86 74.16 63.91 36.84 27.35 18.95 13.46 8.52 6.54 5.09
    下载: 导出CSV

    表  8  动态模量

    Table  8.   Dynamic modulus MPa

    级配 θ/℃ f/Hz
    25.0 10.0 5.0 1.0 0.5 0.1
    5 18313.5 16280.0 14671.0 11166.5 9793.8 6898.3
    G2 20 8669.0 7034.8 5821.8 3541.5 2905.8 1803.8
    35 3169.8 2427.5 1894.8 1131.9 994.9 760.3
    50 1476.0 1267.0 1034.9 774.8 737.8 659.4
    5 17069.8 15072.0 13482.3 10035.0 8728.0 5989.5
    G6 20 7753.5 6221.0 5091.5 3015.0 2451.0 1487.3
    35 8068.1 6901.8 6000.1 4238.0 3658.8 2514.1
    50 9217.1 7886.3 6856.6 4843.2 4181.4 2873.2
    5 16798.0 14866.3 13353.0 10015.7 8770.7 6182.7
    G8 20 8161.0 6591.3 5449.0 3373.0 2804.3 1836.0
    35 2774.7 2101.0 1593.3 829.0 703.1 471.0
    50 1126.7 941.9 712.2 410.5 386.1 314.3
    下载: 导出CSV

    表  9  相位角

    Table  9.   Phase angle (°)

    级配 θ/℃ f/Hz
    25.0 10.0 5.0 1.0 0.5 0.1
    5 12.0 13.6 15.0 18.7 20.1 23.9
    G2 20 23.8 25.0 26.7 29.5 29.2 28.2
    35 31.9 30.0 29.2 26.3 23.8 19.8
    50 26.7 23.0 21.3 18.0 16.1 13.8
    5 13.0 14.6 16.1 19.9 21.3 25.0
    G6 20 24.7 26.2 27.6 30.1 29.7 28.4
    35 32.6 30.4 29.6 27.1 25.2 20.9
    50 27.1 23.6 21.3 18.5 16.7 13.5
    5 13.0 14.5 15.9 19.6 20.9 24.3
    G8 20 23.9 25.4 26.7 29.0 28.6 27.2
    35 34.2 32.5 32.2 31.2 28.5 24.6
    50 30.7 26.3 25.0 23.3 20.5 17.4
    下载: 导出CSV

    表  10  动态模量方差分析P值汇总表

    Table  10.   Summarized of P-value

    θ/℃ f/Hz
    25.0 10.0 5.0 1.0 0.5 0.1
    5 0.0018 0.0021 0.0023 0.0019 0.0013 0.0014
    20 0.0997 0.0085 0.0079 0.0259 0.0413 0.1384
    35 0.0068 0.0106 0.0052 0.0044 0.0036 0.0073
    50 0.0070 0.0093 0.0123 0.0119 0.0125 0.0130
    下载: 导出CSV

    表  11  相位角方差分析P值汇总表

    Table  11.   Summarized of P-value

    θ/℃ f/Hz
    25.0 10.0 5.0 1.0 0.5 0.1
    5 0.0187 0.0204 0.0232 0.0369 0.0498 0.1526
    20 0.3920 0.3966 0.4268 0.6445 0.6649 0.7644
    35 0.0144 0.0126 0.0132 0.0307 0.0354 0.0536
    50 0.0571 0.1787 0.0198 0.0122 0.0147 0.0051
    下载: 导出CSV
  • [1] WITCZAK M W, KALOUSH K, PELLINEN T, et al.Simple performance test for superpave mix design[R]. Washington,D C: Transportation Research Board of the National Academies, 2002: 58-59.
    [2] AASHTO. Mechanistic-empirical pavement design guide[S]. Washington, D C: American association of state highway and transportation officials, 2008.
    [3] BIRGISSON B, ROQUE R.Evaluation of the gradation effect on the dynamic modulus[J]. Transportation Research Record Journal of the Transportation Research Board, 2005(1): 193-199.
    [4] SEO Y, El-HAGGAN O, KING M, et al.Air void models for the dynamic modulus, fatigue cracking, and rutting of asphalt concrete[J]. Journal of Materials in Civil Engineering, 2007, 19(10): 874-883.
    [5] MAHMOUD E, MASAD E, NAZARIAN S, et al.Modeling and experimental evaluation of influence of aggregate blending on asphalt mixture strength[J]. Transportation Research Record Journal of the Transportation Research Board, 2010, 2180(1): 48-57.
    [6] SHU X, HUANG B S.Predicting dynamic modulus of asphalt mixtures with differential method[J]. Road Materials & Pavement Design, 2009, 10(2): 337-359.
    [7] SINGH D, ZAMAN M, COMMURI S.Inclusion of aggregate angularity, texture, and form in estimating dynamic modulus of asphalt mixes[J]. Road Materials & Pavement Design, 2012, 13(2): 1-18.
    [8] ALI Y, IRFAN M, AHMED S, et al.Investigation of factors affecting dynamic modulus and phase angle of various asphalt concrete mixtures[J]. Materials & Structures, 2016, 49(3): 1-12.
    [9] VAVRIK WRPINE WJHUBERGet al.The Bailey method of gradation evaluation: the influence of aggregate gradation and packing characteristics on voids in the mineral aggregateProceedings of the Society for Experimental Biology & Medicine Society for Experimental Biology & Medicine20011182517519

    VAVRIK W R, PINE W J, HUBER G, et al.The Bailey method of gradation evaluation: the influence of aggregate gradation and packing characteristics on voids in the mineral aggregate[J]. Proceedings of the Society for Experimental Biology & Medicine Society for Experimental Biology & Medicine, 2001, 118(2): 517-519.

    [10] AHO B D, HANSEN K R, MOULTHROP J S, et al.BAILEY method for gradation selection in hot-mix ashpalt mixture design [R]. Washing, D C: Transportation Research E-Circular, 2002.
    [11] VAVRIK W, PINE W, CARPENTER S.Aggregate blending for asphalt mix design: Bailey method[J]. Transportation Research Record Journal of the Transportation Research Board, 2002, 1789(1): 146-153.
    [12] SHEN K, CHEN A W, LÜ W J, et al.Influence of Bailey’s chosen unit weight on performance of asphalt mixture[J]. Journal of Chang’an University(Natural science edition), 2008, 28(3): 16-20. (in Chinese)
    [13] 交通部公路科学研究院. 公路土工试验规程:JTG E40—2007[M]. 北京: 人民交通出版社, 2007.
    [14] AASHTO. Stand specification for performance-graded asphalt binder[S]. Washington, D C: American association of state highway and transportation officials, 2010.
    [15] AASHTO. Standard practice for preparation of cylindrical performance test specimens using the superpave gyratory compactor (SGC)[S]. Washington, D C: American association of state highway and transportation officials, 2014.
    [16] AASHTO. Determining the dynamic modulus and flow number for asphalt mixtures using the asphalt mixture performance tester (AMPT)[S]. Washington, D C: American association of state highway and transportation officials, 2013.
  • 加载中
图(7) / 表(11)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  74
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-13
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2017-01-01

目录

    /

    返回文章
    返回