Influence of Mineral Mixture Performance on Dynamic Modulus of Hot Mix Asphalt
-
摘要: 为了解决沥青混合料高温性能不足的问题,研究了矿质混合料性能对沥青混合料动态模量的影响. 以AC-20C型沥青混合料为背景,根据贝雷法3个参数进行了矿质混合料配合比正交试验设计,得到9种不同的矿质混合料级配,并以加州承载比(California bearing ratio,CBR)和振实间隙率为指标,对矿质混合料性能进行了评价,从中选出矿质混合料性能差异明显的3种级配,进行了沥青混合料的配合比设计. 进而在不同温度和加载频率条件下,开展了3种级配沥青混合料的动态模量试验. 依据试验结果,分析了矿质混合料性能对沥青混合料动态模量的影响. 研究表明:高温条件下矿质混合料性能对沥青混合料的动态模量有较大影响,低温时矿质混合料性能对动态模量的影响不明显. 通过优化矿质混合料性能,可以显著改善沥青混合料的高温性能. 具有较高CBR值和较低振实间隙率的矿质混合料,对应的沥青混合料具有较好的高温性能.Abstract: In order to solve the problem of high temperature performance of asphalt mixture, an investigation into the influence of mineral mixture performance on the dynamic modulus of hot mix asphalt (HMA) was conducted. Nine various AC-20C gradations were determined in accordance with a Bailey method parameters based on orthogonal experimental design. The performances of the mineral mixtures with each gradation were evaluated by using the California bearing ratio (CBR) and the voids of vibrated aggregate (VVA) in laboratory. Three gradations with significantly different mineral mixture performances were picked out to make HMA. Then, the dynamic moduli of HMAs corresponding to each of the 3 gradations were tested under multiple temperatures and loading frequencies. The influence of mineral mixture performance on the dynamic modulus of HMA was analyzed in accordance with the experimental results. The results show that the mineral mixture performance has significant influence on the dynamic modulus of HMA at high temperature, while has almost no influence at low temperature. The high temperature performance of HMA can be improved through investigating the CBR and VVA of aggregate in design. Higher CBR and lower VVA imply better high temperature performance of HMA.
-
表 1 贝雷法参数和正交设计水平
Table 1. Factors and levels for orthogonal design
水平 贝雷法参数 CA FAc FAf 1 0.450 0.480 0.450 2 0.600 0.515 0.485 3 0.750 0.550 0.520 注:CA表征的是粗集料内部比例组成;FAc表征的是合成集料中最细一级的嵌挤情况;FAc表征的是细集料中粗料部分与细料部分的嵌挤、填充情况. 表 2 贝雷法3个参数的正交设计值和方案的实际值
Table 2. Designed and actual combinations of the 3 factors
级配编号 正交设计值 实际值 CA FAc FAf CA FAc FAf G1 0.450 0.480 0.450 0.4504 0.4805 0.4504 G2 0.450 0.515 0.485 0.4509 0.5158 0.4860 G3 0.450 0.550 0.520 0.4500 0.5499 0.5196 G4 0.600 0.480 0.485 0.6007 0.4809 0.4854 G5 0.600 0.515 0.520 0.6006 0.5156 0.5196 G6 0.600 0.550 0.450 0.6003 0.5494 0.4494 G7 0.750 0.480 0.520 0.7503 0.4795 0.5199 G8 0.750 0.515 0.450 0.7498 0.5144 0.4497 G9 0.750 0.550 0.485 0.7506 0.5492 0.4847 表 3 CBR和振实间隙率的试验结果
Table 3. Test results of CBR and VVA
指标 级配 G1 G2 G3 G4 G5 G6 G7 G8 G9 CBR/% 42.92 75.30 75.09 43.06 45.42 43.83 37.14 34.71 55.32 VVA/% 28.30 27.99 29.45 28.19 30.73 29.59 30.03 31.12 28.65 注:VVA为矿料振实间隙率,由矿料振实密度和合成毛体积密度决定. 表 4 矿质混合料的CBR和VVA试验结果极差分析
Table 4. Range analysis of CBR and VVA
水平 CBR/% VVA/% CA FAc FAf CA FAc FAf 1 64.446 41.048 40.496 28.580 28.841 29.673 2 44.104 51.811 57.893 29.504 29.944 28.275 3 42.387 58.079 52.549 29.932 29.230 30.067 表 5 CBR的方差分析
Table 5. Variance analysis of CBR
方差来源 偏差平方和 自由度 平均偏差平方和 F值 CA 903.16 2 451.58 32.03 FAc 444.93 2 222.46 15.78 FAf 476.63 2 238.31 16.91 误差 28.19 2 14.10 总和 1852.90 8 表 6 VVA的方差分析
Table 6. Variance analysis of VVA
方差来源 偏差平方和 自由度 平均偏差平方和 F值 CA 2.87 2 1.43 10.19 FAc 1.88 2 0.94 6.68 FAf 5.32 2 2.66 18.92 误差 0.28 2 0.14 总和 10.34 8 表 7 3种选定级配集料通过百分率
Table 7. Three gradations slected aggregate rate through each sieve%
级配 26.5 19 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 G2 100 92.74 83.08 71.03 57.05 37.69 27.54 19.44 14.19 9.45 7.48 5.99 G6 100 93.91 85.62 75.24 63.13 41.00 32.42 22.53 16.01 10.12 7.75 6.01 G8 100 90.67 82.86 74.16 63.91 36.84 27.35 18.95 13.46 8.52 6.54 5.09 表 8 动态模量
Table 8. Dynamic modulus MPa
级配 θ/℃ f/Hz 25.0 10.0 5.0 1.0 0.5 0.1 5 18313.5 16280.0 14671.0 11166.5 9793.8 6898.3 G2 20 8669.0 7034.8 5821.8 3541.5 2905.8 1803.8 35 3169.8 2427.5 1894.8 1131.9 994.9 760.3 50 1476.0 1267.0 1034.9 774.8 737.8 659.4 5 17069.8 15072.0 13482.3 10035.0 8728.0 5989.5 G6 20 7753.5 6221.0 5091.5 3015.0 2451.0 1487.3 35 8068.1 6901.8 6000.1 4238.0 3658.8 2514.1 50 9217.1 7886.3 6856.6 4843.2 4181.4 2873.2 5 16798.0 14866.3 13353.0 10015.7 8770.7 6182.7 G8 20 8161.0 6591.3 5449.0 3373.0 2804.3 1836.0 35 2774.7 2101.0 1593.3 829.0 703.1 471.0 50 1126.7 941.9 712.2 410.5 386.1 314.3 表 9 相位角
Table 9. Phase angle (°)
级配 θ/℃ f/Hz 25.0 10.0 5.0 1.0 0.5 0.1 5 12.0 13.6 15.0 18.7 20.1 23.9 G2 20 23.8 25.0 26.7 29.5 29.2 28.2 35 31.9 30.0 29.2 26.3 23.8 19.8 50 26.7 23.0 21.3 18.0 16.1 13.8 5 13.0 14.6 16.1 19.9 21.3 25.0 G6 20 24.7 26.2 27.6 30.1 29.7 28.4 35 32.6 30.4 29.6 27.1 25.2 20.9 50 27.1 23.6 21.3 18.5 16.7 13.5 5 13.0 14.5 15.9 19.6 20.9 24.3 G8 20 23.9 25.4 26.7 29.0 28.6 27.2 35 34.2 32.5 32.2 31.2 28.5 24.6 50 30.7 26.3 25.0 23.3 20.5 17.4 表 10 动态模量方差分析P值汇总表
Table 10. Summarized of P-value
θ/℃ f/Hz 25.0 10.0 5.0 1.0 0.5 0.1 5 0.0018 0.0021 0.0023 0.0019 0.0013 0.0014 20 0.0997 0.0085 0.0079 0.0259 0.0413 0.1384 35 0.0068 0.0106 0.0052 0.0044 0.0036 0.0073 50 0.0070 0.0093 0.0123 0.0119 0.0125 0.0130 表 11 相位角方差分析P值汇总表
Table 11. Summarized of P-value
θ/℃ f/Hz 25.0 10.0 5.0 1.0 0.5 0.1 5 0.0187 0.0204 0.0232 0.0369 0.0498 0.1526 20 0.3920 0.3966 0.4268 0.6445 0.6649 0.7644 35 0.0144 0.0126 0.0132 0.0307 0.0354 0.0536 50 0.0571 0.1787 0.0198 0.0122 0.0147 0.0051 -
[1] WITCZAK M W, KALOUSH K, PELLINEN T, et al.Simple performance test for superpave mix design[R]. Washington,D C: Transportation Research Board of the National Academies, 2002: 58-59. [2] AASHTO. Mechanistic-empirical pavement design guide[S]. Washington, D C: American association of state highway and transportation officials, 2008. [3] BIRGISSON B, ROQUE R.Evaluation of the gradation effect on the dynamic modulus[J]. Transportation Research Record Journal of the Transportation Research Board, 2005(1): 193-199. [4] SEO Y, El-HAGGAN O, KING M, et al.Air void models for the dynamic modulus, fatigue cracking, and rutting of asphalt concrete[J]. Journal of Materials in Civil Engineering, 2007, 19(10): 874-883. [5] MAHMOUD E, MASAD E, NAZARIAN S, et al.Modeling and experimental evaluation of influence of aggregate blending on asphalt mixture strength[J]. Transportation Research Record Journal of the Transportation Research Board, 2010, 2180(1): 48-57. [6] SHU X, HUANG B S.Predicting dynamic modulus of asphalt mixtures with differential method[J]. Road Materials & Pavement Design, 2009, 10(2): 337-359. [7] SINGH D, ZAMAN M, COMMURI S.Inclusion of aggregate angularity, texture, and form in estimating dynamic modulus of asphalt mixes[J]. Road Materials & Pavement Design, 2012, 13(2): 1-18. [8] ALI Y, IRFAN M, AHMED S, et al.Investigation of factors affecting dynamic modulus and phase angle of various asphalt concrete mixtures[J]. Materials & Structures, 2016, 49(3): 1-12. [9] VAVRIK W R PINE W J HUBER G et al. The Bailey method of gradation evaluation: the influence of aggregate gradation and packing characteristics on voids in the mineral aggregate 2001 118 2 517 519 VAVRIK W R, PINE W J, HUBER G, et al.The Bailey method of gradation evaluation: the influence of aggregate gradation and packing characteristics on voids in the mineral aggregate[J]. Proceedings of the Society for Experimental Biology & Medicine Society for Experimental Biology & Medicine, 2001, 118(2): 517-519.
[10] AHO B D, HANSEN K R, MOULTHROP J S, et al.BAILEY method for gradation selection in hot-mix ashpalt mixture design [R]. Washing, D C: Transportation Research E-Circular, 2002. [11] VAVRIK W, PINE W, CARPENTER S.Aggregate blending for asphalt mix design: Bailey method[J]. Transportation Research Record Journal of the Transportation Research Board, 2002, 1789(1): 146-153. [12] SHEN K, CHEN A W, LÜ W J, et al.Influence of Bailey’s chosen unit weight on performance of asphalt mixture[J]. Journal of Chang’an University(Natural science edition), 2008, 28(3): 16-20. (in Chinese) [13] 交通部公路科学研究院. 公路土工试验规程:JTG E40—2007[M]. 北京: 人民交通出版社, 2007. [14] AASHTO. Stand specification for performance-graded asphalt binder[S]. Washington, D C: American association of state highway and transportation officials, 2010. [15] AASHTO. Standard practice for preparation of cylindrical performance test specimens using the superpave gyratory compactor (SGC)[S]. Washington, D C: American association of state highway and transportation officials, 2014. [16] AASHTO. Determining the dynamic modulus and flow number for asphalt mixtures using the asphalt mixture performance tester (AMPT)[S]. Washington, D C: American association of state highway and transportation officials, 2013.