留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粒子群优化BP神经网络的医患关系风险预警模型

王宗杰 邢明峰 王洪泊

王宗杰, 邢明峰, 王洪泊. 基于粒子群优化BP神经网络的医患关系风险预警模型[J]. 机械工程学报, 2017, 43(1): 8-12. doi: 10.11936/bjutxb2016040071
引用本文: 王宗杰, 邢明峰, 王洪泊. 基于粒子群优化BP神经网络的医患关系风险预警模型[J]. 机械工程学报, 2017, 43(1): 8-12. doi: 10.11936/bjutxb2016040071
WANG Zongjie, XING Mingfeng, WANG Hongbo. Risk Pre-warning Model of Doctor-Patient Relationship Based on Particle Swarm Optimization BP Neural Network[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 8-12. doi: 10.11936/bjutxb2016040071
Citation: WANG Zongjie, XING Mingfeng, WANG Hongbo. Risk Pre-warning Model of Doctor-Patient Relationship Based on Particle Swarm Optimization BP Neural Network[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 8-12. doi: 10.11936/bjutxb2016040071

基于粒子群优化BP神经网络的医患关系风险预警模型

doi: 10.11936/bjutxb2016040071
基金项目: 国家自然科学基金资助项目(61572074)
详细信息
    作者简介:

    王宗杰,北京科技大学计算机与系统科学研究所所长,副教授,硕士生导师. 兼任北京市人工智能学会理事. 主要研究领域为大系统与人工智能,作为课题负责人承担国家“十五”科技攻关课题“数字气田关键技术及应用示范”、国家“863”计划资助项目“油气田信息资源集成服务平台关键技术及应用研究”子课题、国家“十二五”国土资源部项目“地质灾害监测技术集成研究”子课题.

  • 中图分类号: TP183

Risk Pre-warning Model of Doctor-Patient Relationship Based on Particle Swarm Optimization BP Neural Network

  • 摘要: 为了提高医患关系风险预警的准确度,提出一种基于粒子群优化反向传播(back propagation,BP)神经网络的医患关系风险预警模型. 首先采用通过粒子群算法优化BP神经网络初始权值和阈值的方法来提高BP神经网络的预测准确度;通过对模型优化前后的对比分析,得出优化后模型预测误差更小的实验结果. 仿真结果表明:此方法建立的医患关系风险预警模型收敛速度更快,预测精度更高.

     

  • 图  3层BP神经网络结构

    Figure  1.  Structure of three layers neural network

    图  粒子群适应度的变化

    Figure  2.  Change of particle swarm adaption

    图  实验期望与实际输出

    Figure  3.  Experimental expectations and actual output

    图  基于粒子群优化BP训练误差

    Figure  4.  PSO-BP training error

    图  基于粒子群优化BP模型实际输出与期望的线性回归

    Figure  5.  Actual output with the expected linear regression of the PSO-BP model

    图  BP与基于粒子群优化BP误差对比

    Figure  6.  BP and PSO-BP error comparison

    表  1  部分测试数据及结果

    Table  1.   Some of the test data and results

    医方责任 患方责任 医疗行政管理问题 医疗行为过失 医疗行为不存在过失 期望值 实际输出
    1 1 0 1 0 1 1
    1 0 0 0 1 1 1
    1 1 1 1 1 2 2
    1 0 1 0 0 2 2
    1 0 0 0 1 2 2
    1 0 0 1 0 3 3
    1 0 0 1 1 3 3
    下载: 导出CSV
  • [1] HUO D D.Government response to the malignant events caused by medical disputes in China [D]. Beijing: Graduate School of the Chinese Academy of Social Sciences, 2012: 1-12. (in Chinese)
    [2] ZHU L, GUO C.Analysis on the causes of medical disputes[J]. China Coal Industry Medical Journal, 2007 (5): 615-616. (in Chinese)
    [3] SHU D X, ZHOU J, WANG X X.Analysis of the current situation of medical disputes and preventive measures[J]. Modern Medical and Health, 2007(8): 1248-1249. (in Chinese)
    [4] GUO L, CHEN W R, JIA J B, et al.Neural network based on particle swarm optimization algorithm for BP neural network modeling[J]. Electrical Energy New Technology, 2011(2): 84-88. (in Chinese)
    [5] LI B.Particle swarm optimization algorithm and its application in neural network [D]. Dalian: Dalian University of Technology, 2005: 3-5. (in Chinese)
    [6] WANG H B, ZHAO X Q, XIA K J, et al.Cooperative velocity updating model based particle swarm optimization[J]. Applied Intelligence, 2014(2): 322-342.
    [7] HONG L, LI R J.BP neural network based on particle swarm optimization algorithm for color space conversion[J]. Packaging Engineering, 2014(9): 105-109. (in Chinese)
    [8] LONG Q, LIU Y Q, YANG Y P.Fault diagnosis method of wind turbine gearbox based on particle swarm optimization BP neural network[J]. Journal of Solar Energy, 2012(1): 120-125. (in Chinese)
    [9] HOU Z R, LÜ Z S.Particle swarm optimization algorithm based on MATLAB and its application MATLAB[J]. Computer Simulation, 2003(10): 68-70. (in Chinese)
    [10] PAN F, CHEN J, XIN B, et al.Particle swarm optimization (PSO): a number of characteristics analysis[J]. Journal of Automation, 2009(7): 1011-1015. (in Chinese)
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  53
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-26
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2017-01-01

目录

    /

    返回文章
    返回