留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于递归聚类与相似性的模糊神经网络结构设计

李微 乔俊飞

李微, 乔俊飞. 基于递归聚类与相似性的模糊神经网络结构设计[J]. 机械工程学报, 2017, 43(2): 210-216. doi: 10.11936/bjutxb2016040086
引用本文: 李微, 乔俊飞. 基于递归聚类与相似性的模糊神经网络结构设计[J]. 机械工程学报, 2017, 43(2): 210-216. doi: 10.11936/bjutxb2016040086
LI Wei, QIAO Junfei. Structure Design of Fuzzy Neural Networks Based on Recursive Clustering and Similarity[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 210-216. doi: 10.11936/bjutxb2016040086
Citation: LI Wei, QIAO Junfei. Structure Design of Fuzzy Neural Networks Based on Recursive Clustering and Similarity[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 210-216. doi: 10.11936/bjutxb2016040086

基于递归聚类与相似性的模糊神经网络结构设计

doi: 10.11936/bjutxb2016040086
基金项目: 国家自然科学基金资助项目(61533002);国家杰出青年科学基金资助项目(61225016);北京市科技新星计划(Z131104000413007)
详细信息
  • 中图分类号: TP183

Structure Design of Fuzzy Neural Networks Based on Recursive Clustering and Similarity

  • 摘要: 针对模糊神经网络结构设计问题,提出一种基于递归聚类与相似性的结构设计方法. 首先,提出以输出变化强度为导向、以结构细分为手段的递归聚类方法对网络初始结构进行设计. 其次,通过计算模糊规则的相似性,将高度相似的规则进行合并,在保持良好精度的前提下,对网络初始结构进行简化. 最后,通过函数逼近、非线性系统辨识仿真实验验证了方法的可行性和有效性.

     

  • 图  Mamdani模糊神经网络逼近效果

    Figure  1.  Approximation result of Mamdani FNN

    图  Mamdani模糊神经网络逼近误差

    Figure  2.  Approximation error of Mamdani FNN

    图  Mamdani模糊神经网络辨识效果

    Figure  3.  Identification result of Mamdani FNN

    图  Mamdani模糊神经网络辨识误差

    Figure  4.  Identification error of Mamdani FNN

    表  1  不同方法的性能对比

    Table  1.   Comparisons between different methods

    方法 模糊规则数 参数个数 训练RMSE 测试RMSE
    Wang等[8] 8 24 0.0241 0.0492
    Pedrycz等[7] 8 24 0.150 0.153
    Pedrycz等[7] 10 30 0.1470 0.1620
    Wang等[15] 11 33 0.0018 0.0225
    本文 8 24 0.0167 0.0395
    本文 10 30 0.0100 0.0168
    下载: 导出CSV

    表  2  不同方法的性能对比

    Table  2.   Comparisons between different methods

    方法 模糊规则数 参数个数 测试RMSE
    DFNN[14] 6 48 0.1315
    SOFMLS[17] 6 48 0.0290
    GA[18] 7 37 0.0500
    MCFC[19] 0.0874
    本文(结构简化前) 6 42 0.0207
    本文(结构简化后) 5 35 0.0259
    下载: 导出CSV
  • [1] KUNG C C, SU J Y.Affine Takagi-Sugeno fuzzy modelling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion[J]. IET Control Theory and Application, 2007, 1(5): 1255-1265.
    [2] LI C S, ZHOU J Z, FU B, et al.T-S fuzzy model identification with a gravitational search-based hyperplane clustering algorithm[J]. IEEE Transactions on Fuzzy System, 2012, 20(2): 305-317.
    [3] PEDRYCZ W, IZAKIAN H.Cluster-centric fuzzy modeling[J]. IEEE Transactions on Fuzzy System, 2014, 22(6): 1585-1597.
    [4] CHEN M Y, LINKENS D A.Rule-base self-generation and simplification for data-driven fuzzy models[J]. Fuzzy Sets and Systems, 2004, 142(2): 243-265.
    [5] DELGADO M, GOMEZ-SKARMETA A F, MARTIN F. A fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling[J]. IEEE Transactions on Fuzzy System, 1997, 5(2): 223-233.
    [6] PRASAD M, LIN Y Y, LIN C Y, et al.A new data-driven neural fuzzy system with collaborative fuzzy clustering mechanism[J]. Neurocomputing, 2015, 167: 558-568.
    [7] PEDRYCZ W, KWAK K C.Linguistic models as a framework of user-centric system modeling[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 2006, 36(4): 727-745.
    [8] WANG D, ZENG X J, KEANE J A.An output-constrained clustering approach for the identification of fuzzy systems and fuzzy granular systems[J]. IEEE Transactions on Fuzzy System, 2011, 19(6): 1127-1140.
    [9] CHAO C T, CHEN Y J, TENG C C.Simplification of fuzzy neural systems using similarity analysis[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 1996, 26(2): 344-354.
    [10] MACQUEEN J.Some methods for classification and analysis of multivativate observations [C]∥Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967: 281-297.
    [11] 李国勇. 神经模糊控制理论及应用[M]. 北京: 电子工业出版社, 2009: 286-316.
    [12] LENG G, PRASAD G, MCGINNITY T M.An on-line algorithm for creating self-organizing fuzzy neural networks[J]. Neural Networks, 2004, 17(10): 1477-1493.
    [13] SETNES M, BABUSKA R, KAYMAK U, et al.Similarity measures in fuzzy rule base simplification[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 1998, 28(3): 376-386.
    [14] LI W, QIAO J F, ZENG X J.Accurate similarity analysis and computing of Gaussian membership functions for FNN simplification[C]//12th International Conference on Fuzzy Systems and Knowledge Discovery. New York: Institute of Electrical and Electronics Engineers Inc, 2015: 402-409.
    [15] WANG D, ZENG X J, KEANE J A.A clustering algorithm for radial basis function neural network initialization[J]. Neurocomputing, 2012, 77: 144-155.
    [16] ER M J, WU S Q.A fast learning algorithm for parsimonious fuzzy neural systems[J]. Fuzzy Sets and Systems, 2002, 126(3): 337-351.
    [17] RUBIO J D J. SOFMLS: online self-organizing fuzzy modified least-squares network[J]. IEEE Transaction on Fuzzy Systems, 2009, 17(6): 1296-1309.
    [18] GUENOUNOUA O, DAHHOU B, CHABOUR F.TSK fuzzy model with minimal parameters[J]. Applied Soft Computing, 2015, 30: 748-757.
    [19] PRASADMCHOU KPSAXENAAet al.Collaborative fuzzy rule learning for Mamdani type fuzzy inference system with mapping of cluster centersProceedings of 2014 IEEE Symposium Series on Computational Intelligence. New York: Institute of Electrical and Electronics Engineers Inc20141520

    PRASAD M, CHOU K P, SAXENA A, et al.Collaborative fuzzy rule learning for Mamdani type fuzzy inference system with mapping of cluster centers[C]//Proceedings of 2014 IEEE Symposium Series on Computational Intelligence. New York: Institute of Electrical and Electronics Engineers Inc, 2014: 15-20.

  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  48
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-26
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回