留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于文本情感极性分析的动态卷积神经网络超限学习算法

贾熹滨 李宁 靳亚

贾熹滨, 李宁, 靳亚. 用于文本情感极性分析的动态卷积神经网络超限学习算法[J]. 机械工程学报, 2017, 43(1): 28-35. doi: 10.11936/bjutxb2016040093
引用本文: 贾熹滨, 李宁, 靳亚. 用于文本情感极性分析的动态卷积神经网络超限学习算法[J]. 机械工程学报, 2017, 43(1): 28-35. doi: 10.11936/bjutxb2016040093
JIA Xibin, LI Ning, JIN Ya. Dynamic Convolutional Neural Network Extreme Learning Machine for Text Sentiment Classification[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 28-35. doi: 10.11936/bjutxb2016040093
Citation: JIA Xibin, LI Ning, JIN Ya. Dynamic Convolutional Neural Network Extreme Learning Machine for Text Sentiment Classification[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 28-35. doi: 10.11936/bjutxb2016040093

用于文本情感极性分析的动态卷积神经网络超限学习算法

doi: 10.11936/bjutxb2016040093
基金项目: 国家自然科学基金资助项目(61175115,61370113)
详细信息
    作者简介:

    作者简介: 贾熹滨(1969—), 女, 副教授, 主要从事视觉图像理解方面的研究, E-mail:jiaxibin@bjut.edu.cn

  • 中图分类号: TP391

Dynamic Convolutional Neural Network Extreme Learning Machine for Text Sentiment Classification

  • 摘要: 为改善动态卷积神经网络在文本情感分类方法中的泛化能力,提出了一种动态卷积超限学习算法. 对动态卷积神经网络的输出层加以改进,使用浅层随机神经网络替代全连接层,利用参数随机生成的扰动性能,降低分类端对训练样本的依赖,避免过拟合,提升分类性能. 在公共数据集上的实验证明:相对改进前的动态卷积学习算法以及超限学习机,所提出的方法在准确率、F1测度等多个标准指标上均体现了更优的分类性能.

     

  • 图  以词数为7的输入语句为样例的CNN结构

    Figure  1.  CNN architecture for the seven word input sentences

    图  以词数为7的输入语句为样例的DCNN结构

    Figure  2.  DCNN architecture for the seven word input sentences

    图  ELM算法结构

    Figure  3.  Architecture of ELM

    图  以词数为7的输入语句为样例的DCELM结构图

    Figure  4.  DCELM architecture for the seven word input sentences

    图  4种算法在不同数据集上的精确率

    Figure  5.  Precision of four algorithms on different data sets

    图  4种算法在不同数据集上的召回率

    Figure  6.  Recall of four algorithms on different data sets

    图  4种算法在不同数据集上的F1测度

    Figure  7.  F1-measure of four algorithms on different data sets

    图  ELM-f的准确率随隐层节点改变的变化情况

    Figure  8.  Accuracy of ELM-f with the change of hidden nodes

    图  ELM-v的准确率随隐层节点改变的变化情况

    Figure  9.  Accuracy of ELM-v with the change of hidden nodes

    图  10  DCELM的准确率随隐层节点改变的变化情况

    Figure  10.  Accuracy of DCELM with the change of hidden nodes

    表  1  3种数据集概述

    Table  1.   Description of three data sets

    数据集 l N |V| Test
    ChnSentiCorp 33 3009 4870 500
    MioChnCorp-2 26 120000 13560 20000
    SST-2 19 9613 16185 1821
    下载: 导出CSV

    表  2  4种算法在不同数据集上的准确率

    Table  2.   Accuracy on four data sets%

    数据集 ELM-f ELM-v DCNN DCELM
    ChnSentiCorp 83.80 75.00 89.00 90.00
    MioChnCorp-2 87.34 81.54 90.05 91.49
    SST-2 77.27 62.84 81.71 82.70
    下载: 导出CSV
  • [1] DAVE K, LAWRENCE S, PENNOCK D M.Mining the peanut gallery: opinion extraction and semantic classification of product reviews[C]//Proceedings of the 12th international conference on World Wide Web. New York: ACM, 2003: 519-528.
    [2] KIM S M, HOVY E.Determining the sentiment of opinions[C]//Proceedings of the 20th international conference on Computational Linguistics. Stroudsburg: ACL, 2004: 1367-1373
    [3] YANG D, YANG A M.Classification approach of Chinese texts sentiment based on semantic lexicon and naive Bayesian[J]. Application Research of Computers, 2010, 27(10): 3737-3739. (in chinese)
    [4] JI J Z, ZHANG L L, WU C S, et al.Semantic weight-based naive Bayesian algorithm for text sentiment classification[J]. Journal of Beijing University of Technology, 2014, 40(12): 1884-1890. (in chinese)
    [5] PANG B, LEE L, VAITHYANATHAN S.Thumbs up?: sentiment classification using machine learning techniques[C] ∥Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2002: 79-86.
    [6] SOCHERRPENNINGTONJHUANG EHet al.Semi-supervised recursive autoencoders for predicting sentiment distributions Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL2011151161

    SOCHER R, PENNINGTON J, HUANG E H, et al.Semi-supervised recursive autoencoders for predicting sentiment distributions[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2011: 151-161.

    [7] SOCHERRPERELYGINAWUJet al.Recursive deep models for semantic compositionality over a sentiment treebank Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL201316311642

    SOCHER R, PERELYGIN A, WU J, et al.Recursive deep models for semantic compositionality over a sentiment treebank[C]// Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2013: 1631-1642.

    [8] JURGOVSKY J, GRANITZER M.Comparing recursive autoencoder and convolutional network for phrase-level sentiment polarity classification[C]// International Conference on Applications of Natural Language to Information Systems. Berlin: Springer, 2015: 160-166.
    [9] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P.A convolutional neural network for modelling sentences[C] ∥Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore: ACL, 2014: 655-665.
    [10] KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: ACL, 2014: 1746-1751.
    [11] HERMANN K M, BLUNSOM P.The role of syntax in vector space models of compositional semantics[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia: ACL, 2013: 894-904.
    [12] SOCHERRHUVALBMANNING CDet al.Semantic compositionality through recursive matrix-vector spaces Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg: ACL201212011211

    SOCHER R, HUVAL B, MANNING C D, et al.Semantic compositionality through recursive matrix-vector spaces[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg: ACL, 2012: 1201-1211.

    [13] HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
    [14] HUANG GBZHU QYSIEW CK.Extreme learning machine: a new learning scheme of feedforward neural networks 2004 Proceedings 2004 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE20042985990

    HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine: a new learning scheme of feedforward neural networks[C]// 2004 Proceedings 2004 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE, 2004, 2: 985-990.

    [15] MIKOLOV T, YIH W, ZWEIG G.Linguistic regularities in continuous spaceword representations[C]//Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Atlanta: ACL, 2013: 746-751.
    [16] TAN S, ZHANG J.An empirical study of sentiment analysis for Chinese documents[J]. Expert Systems with Applications, 2008, 34(4): 2622-2629.
    [17] LIN Y, LEI H, WU J, et al.An empirical study on sentiment classification of chinese review using word embedding[C]// 29th Pacific Asia Conference on Language, Information and Computation. Shanghai: Computer Science, 2015: 258-266.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  52
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-27
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2017-01-01

目录

    /

    返回文章
    返回