Dynamic Convolutional Neural Network Extreme Learning Machine for Text Sentiment Classification
-
摘要: 为改善动态卷积神经网络在文本情感分类方法中的泛化能力,提出了一种动态卷积超限学习算法. 对动态卷积神经网络的输出层加以改进,使用浅层随机神经网络替代全连接层,利用参数随机生成的扰动性能,降低分类端对训练样本的依赖,避免过拟合,提升分类性能. 在公共数据集上的实验证明:相对改进前的动态卷积学习算法以及超限学习机,所提出的方法在准确率、F1测度等多个标准指标上均体现了更优的分类性能.
-
关键词:
- 文本情感分类 /
- 动态卷积 /
- 超限学习机 /
- 动态卷积超限学习算法
Abstract:Aim ing at improving the generalization performance of the dynamic convolutional neural network on text sentiment classification, a dynamic convolutional extreme learning machine algorithm was proposed. This algorithm modified the output layer of dynamic convolutional neural network by replacing the fully connection layer with the shallow random neural network. By utilizing the perturbation ability of the random generation of parameters, it is prone to mitigate the dependence on training samples and avoid over-fitting to improve the classification performance. Experiments on several public data sets show that this approach outperforms the dynamic convolutional neural network and extreme learning machine under the evaluation metrics including accuracy rate, F1-measure, etc. -
表 1 3种数据集概述
Table 1. Description of three data sets
数据集 l N |V| Test ChnSentiCorp 33 3009 4870 500 MioChnCorp-2 26 120000 13560 20000 SST-2 19 9613 16185 1821 表 2 4种算法在不同数据集上的准确率
Table 2. Accuracy on four data sets%
数据集 ELM-f ELM-v DCNN DCELM ChnSentiCorp 83.80 75.00 89.00 90.00 MioChnCorp-2 87.34 81.54 90.05 91.49 SST-2 77.27 62.84 81.71 82.70 -
[1] DAVE K, LAWRENCE S, PENNOCK D M.Mining the peanut gallery: opinion extraction and semantic classification of product reviews[C]//Proceedings of the 12th international conference on World Wide Web. New York: ACM, 2003: 519-528. [2] KIM S M, HOVY E.Determining the sentiment of opinions[C]//Proceedings of the 20th international conference on Computational Linguistics. Stroudsburg: ACL, 2004: 1367-1373 [3] YANG D, YANG A M.Classification approach of Chinese texts sentiment based on semantic lexicon and naive Bayesian[J]. Application Research of Computers, 2010, 27(10): 3737-3739. (in chinese) [4] JI J Z, ZHANG L L, WU C S, et al.Semantic weight-based naive Bayesian algorithm for text sentiment classification[J]. Journal of Beijing University of Technology, 2014, 40(12): 1884-1890. (in chinese) [5] PANG B, LEE L, VAITHYANATHAN S.Thumbs up?: sentiment classification using machine learning techniques[C] ∥Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2002: 79-86. [6] SOCHER R PENNINGTON J HUANG E H et al. Semi-supervised recursive autoencoders for predicting sentiment distributions 2011 151 161 SOCHER R, PENNINGTON J, HUANG E H, et al.Semi-supervised recursive autoencoders for predicting sentiment distributions[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2011: 151-161.
[7] SOCHER R PERELYGIN A WU J et al. Recursive deep models for semantic compositionality over a sentiment treebank 2013 1631 1642 SOCHER R, PERELYGIN A, WU J, et al.Recursive deep models for semantic compositionality over a sentiment treebank[C]// Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2013: 1631-1642.
[8] JURGOVSKY J, GRANITZER M.Comparing recursive autoencoder and convolutional network for phrase-level sentiment polarity classification[C]// International Conference on Applications of Natural Language to Information Systems. Berlin: Springer, 2015: 160-166. [9] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P.A convolutional neural network for modelling sentences[C] ∥Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore: ACL, 2014: 655-665. [10] KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: ACL, 2014: 1746-1751. [11] HERMANN K M, BLUNSOM P.The role of syntax in vector space models of compositional semantics[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia: ACL, 2013: 894-904. [12] SOCHER R HUVAL B MANNING C D et al. Semantic compositionality through recursive matrix-vector spaces 2012 1201 1211 SOCHER R, HUVAL B, MANNING C D, et al.Semantic compositionality through recursive matrix-vector spaces[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg: ACL, 2012: 1201-1211.
[13] HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501. [14] HUANG G B ZHU Q Y SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks 2004 2 985 990 HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine: a new learning scheme of feedforward neural networks[C]// 2004 Proceedings 2004 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE, 2004, 2: 985-990.
[15] MIKOLOV T, YIH W, ZWEIG G.Linguistic regularities in continuous spaceword representations[C]//Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Atlanta: ACL, 2013: 746-751. [16] TAN S, ZHANG J.An empirical study of sentiment analysis for Chinese documents[J]. Expert Systems with Applications, 2008, 34(4): 2622-2629. [17] LIN Y, LEI H, WU J, et al.An empirical study on sentiment classification of chinese review using word embedding[C]// 29th Pacific Asia Conference on Language, Information and Computation. Shanghai: Computer Science, 2015: 258-266.