留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均质三维Navier-Stokes方程模型的整体正则性

邵曙光 葛玉丽 王术 徐文青

邵曙光, 葛玉丽, 王术, 徐文青. 非均质三维Navier-Stokes方程模型的整体正则性[J]. 机械工程学报, 2017, 43(2): 320-326. doi: 10.11936/bjutxb2016040094
引用本文: 邵曙光, 葛玉丽, 王术, 徐文青. 非均质三维Navier-Stokes方程模型的整体正则性[J]. 机械工程学报, 2017, 43(2): 320-326. doi: 10.11936/bjutxb2016040094
SHAO Shuguang, GE Yuli, WANG Shu, XU Wenqing. Global Regularity for a Model of Inhomogeneous Three-dimensional Navier-Stokes Equations[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 320-326. doi: 10.11936/bjutxb2016040094
Citation: SHAO Shuguang, GE Yuli, WANG Shu, XU Wenqing. Global Regularity for a Model of Inhomogeneous Three-dimensional Navier-Stokes Equations[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 320-326. doi: 10.11936/bjutxb2016040094

非均质三维Navier-Stokes方程模型的整体正则性

doi: 10.11936/bjutxb2016040094
基金项目: 国家自然科学基金资助项目(11371042);北京市自然科学基金资助项目(1132006)
详细信息
    作者简介:

    作者简介: 邵曙光(1980— ), 男, 博士研究生, 主要从事应用偏微分方程方面的研究, E-mail:ssg@emails.bjut.edu.cn

    通讯作者:

    葛玉丽(1981— ), 女, 硕士研究生, 主要从事应用偏微分方程方面的研究, E-mail:yulixli@126.com

  • 中图分类号: O175.29

Global Regularity for a Model of Inhomogeneous Three-dimensional Navier-Stokes Equations

  • 摘要: 考虑一个非均质三维Navier-Stokes方程模型,借助能量方法、Littlewood-Paley仿积分解技巧和Sobolev嵌入定理研究解的整体正则性. 用-D2u近似替代经典非均质Navier-Stokes方程中的耗散项Δu,得到一个新的Navier-Stokes方程模型,其中D是一个傅里叶乘子,其特征是m(ξ)=|ξ|5/4,对于任意小的正常数εδ,当初值(ρ0,u0)∈H3/2×Hδ时,证明了该模型解的爆破准则和整体正则性.

     

  • [1] KAZHIKOV A V.Resolution of boundary value problems for nonhomogeneous vicous fluids[J]. Dokl Akad Nauh, 1974, 216:1008-1010.
    [2] SIMON J.Sur les fluides visqueux incompressibles et non homogènes[J]. C R Acad Sci Paris, 1989, 309: 447-452.
    [3] SIMON J.Nonhomogeneous vicous incompressible fluids: existence of velocity, density, and pressure[J]. SIAM J Math Anal, 1990, 21: 1093-1117.
    [4] LIONS P L.Mathematical topics in fluid mechanics: vol 1 incompressible models, oxford lecture series in mathematics and its applications[M]. New York: The Clarendon Press, Oxford University Press, 1996: 237.
    [5] LADYZHENSKAYA O, SOLONNIKOV V A.Unique solvability of an initial and boundary value problem for vicous incompressible nonhomogeneous fluids[J].J Soviet Math, 1978(9): 697-749.
    [6] PADULA M.An existence theorem for non-homogeneous incompressible fluids[J]. Rend Circ Mat Palermo, 1982, 31: 119-124.
    [7] SALVI R.The equations of vicous incompressible nonhomogeneous fluids: on the existence and regularity[J]. J Austral Math Soc: Ser B, 1991, 33: 94-110.
    [8] CHOE H J, KIM H.Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids[J]. Partial Differential Equations, 2003, 28: 1183-1201.
    [9] TONG L N, YUAN H J.Classical solutions to Navier-Stokes equations for nonhomogeneous incompressible fluids with non-negetive densities[J]. J Math Anal Appl, 2010, 362: 476-504.
    [10] FUJITA H, KATO T.On the Navier-Stokes initial value problems I[J]. Arch Rational Mech Anal, 1964, 16: 269-315.
    [11] DANCHIN R.Density-dependent incompressible viscous fluids in critical spaces[J]. Proc Roy Soc Edinburgh Sect A, 2003, 133: 1311-1334.
    [12] DANCHIN R.Local and global well-posedness results for flows of inhomogeneous viscous fluids[J].Adv Differential Equations, 2004(9): 353-386.
    [13] TAO T.Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation[J].Anal PDE, 2009(2): 361-366.
    [14] 苗长兴, 吴家宏, 章志飞. Little-Paley理论及其在流体动力学方程中的应用[M]. 北京: 科学出版社, 2015: 54-56.
    [15] DANCHIN R.The inviscid limit for density-dependent incompressible fluids[J].Ann Fac Sci Toulouse Math, 2006(15): 637-688.
    [16] BAHOURI H, CHEMIN J Y, DANCHIN R.Fourier analysis and nonlinear partial differential equations[M]. Heidelberg: Springer, 2011: 343.
  • 加载中
计量
  • 文章访问数:  70
  • HTML全文浏览量:  57
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-28
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回