Preparation and Durability of Modified Hydraulic Lime-based Material
-
摘要: 为了得到更加适宜于岩土文物保护加固的水硬性石灰材料,研究了掺加矿粉、外加剂和聚乙烯醇纤维的改性水硬性石灰的配合比优化设计、力学性能、水化硬化机理和耐久性. 研究发现:矿粉、外加剂和聚乙烯醇纤维能显著提高水硬性石灰的力学性能以及耐久性;经改性后的水硬性石灰试样D,其抗折强度、抗压强度和拉拔强度分别能达到3.27、15.45、0.61MPa,而且,经过耐水、耐盐和干湿循环试验后,仍然保持较高的力学性能,这对于岩土质文物的保护修复具有重大的意义.Abstract: In order to get more suitable hydraulic lime materials for stone and earthen historical relics reinforcement conservation, the slag, admixtures and polyvinyl alcohol fiber modified hydraulic lime mixture proportion optimization design, physical mechanical properties, mechanism of hydration hardening and durability were studied in this paper. The researches show that adding slag, admixtures and polyvinyl alcohol fiber can significantly improve the samples’ physical mechanical properties and durability. The flexural strength, compressive strength and pull strength of the modified hydraulic lime sample D had reached at 3.27, 15.45 and 0.61MPa, respectively. Moreover, after the water, salt and dry-wet cycle tests, the sample D still keeps high mechanical properties, which have important implications for conservation and restoration of the stone and earthen historical relics.
-
Key words:
- hydraulic lime /
- slag /
- polyvinyl alcohol fiber /
- durability
-
表 1 水硬性石灰和矿粉的化学分析结果
Table 1. Chemical compositions of the hydraulic lime and slag%
成分 w(CaO) w(SiO2) w(Al2O3) w(MgO) w(Fe2O3) w(K2O) w(SO3) w(TiO2) w(loss) 水硬性石灰 70.7 15.2 5.32 2.64 2.33 1.84 1.00 0.36 0.61 矿粉 43.7 23.2 12.3 16.6 0.17 0.29 1.35 1.63 0.76 表 2 聚乙烯醇纤维的性能参数
Table 2. Properties of the polyvinyl alcohol fiber
直径/μm 密度/(g·cm-3) 抗拉强度/MPa 长度/mm 材料形状 分散性/级 18±3 1.3 1860 6~12 束状单丝 1 表 3 水硬性石灰-矿粉复合体系的配合比
Table 3. Mix proportion of hydraulic lime-slag system
编号 w(石灰)/% w(矿粉)/% 水胶比 o 100 0 0.51 a 70 30 0.50 b 60 40 0.50 c 50 50 0.48 d 40 60 0.47 e 30 70 0.47 f 20 80 0.47 表 4 掺外加剂和纤维的水硬性石灰-矿粉体系的配合比
Table 4. Mix proportion of hydraulic lime-slag system mixing with admixtures and fiber
编号 w(石灰)/% w(矿粉)/% w(黏性剂)/% w(抗裂剂)/% w(触变剂)/% w(黏结剂)/% w(纤维)/% 水胶比 o 100 0 0.0 0.0 0.0 0.0 0.00 0.51 A 40 60 0.0 0.0 0.0 0.0 0.00 0.47 B 40 60 0.8 0.8 0.8 0.8 0.00 0.51 C 40 60 0.8 0.8 0.8 0.8 0.25 0.51 D 40 60 0.8 0.8 0.8 0.8 0.50 0.51 E 40 60 0.8 0.8 0.8 0.8 0.75 0.52 F 40 60 0.8 0.8 0.8 0.8 1.00 0.52 G 40 60 0.8 0.8 0.8 0.8 1.25 0.52 H 40 60 0.8 0.8 0.8 0.8 1.50 0.52 表 5 典型配合比试样50d力学性能
Table 5. Fiftieth day physical mechanical properties of typical mix proportion
试样编号 抗折强度/MPa 提高率/% 抗压强度/MPa 提高率/% 拉拔强度/MPa 提高率/% o 0.56 3.69 0.162 A 1.86 232 16.26 340 0.168 3.7 B 2.46 339 13.20 257 0.541 233.0 D 3.27 483 15.45 318 0.610 276.0 -
[1] ZHAO L Y.The modification research of two kinds of traditional materials used on preservation of the stone and earthen cultural relics[D]. Lanzhou: Lanzhou University, 2012: 8-87. (in Chinese) [2] LI L, ZHAO L Y, WANG J H, et al.Study on the physical and mechanical properties of two kinds of traditional silicate materials of China ancient buildings[J]. Chin J Rock Mech Eng, 2011, 31(10): 2120-2127. (in Chinese) [3] ZHOU S L.Organic polymer materials and requirements for the protection of cultural relics[J].Sichuan Culture Relics, 2003(3): 94-96. (in Chinese) [4] CHIARI G.Chemical surface treatments and capping technique of earthen structures: along-term evaluation[C]//6th International Conference on the Conservation of Earthen Architecture. Las Cruces: [s.n.], 1990: 267-273. [5] PENG F S, Natural hydraulic limes[J].Lime, 2009(3): 44-48. (in Chinese) [6] HUGHES J J, CUTHBERT S J.The petrography and micro-structure of medieval lime mortars from the west of Scotland implications for the formulation of repair and replacement mortars[J]. Mater Struct, 2000, 33(11): 594-600. [7] ADEL E, BALL R J, CARTER M A, et al.Effect of dewatering on the strength of lime and cement mortars[J]. J Am Ceram Soc, 2010, 93(7): 2074-2081. [8] PAVÍA S, TOOMEY B. Influence of the aggregate quality on the physical properties of natural feebly-hydraulic lime mortars[J]. Mater Struct, 2008, 41(3): 559-569. [9] SABBIONI C, ZAPPIA G, RIONTINO C, et al.Atmospheric deterioration of ancient and modern hydraulic mortars[J]. Atmos Environ, 2001, 35(3): 539-548. [10] ALVAREZ V I P. Performance analysis of hydraulic lime grouts for masonry repair[M]. Philadelphia: University of Pennsylvania, 2006: 16-63. [11] MOROPOULOU A, BAKOLAS A, BISBIKOU K.Physico-chemical adhesion and cohesion bonds in joint mortars imparting durability to the historic structures[J]. Construction and Building Materials, 2000, 14(1): 35-46. [12] MOROPOULOU A, BAKOLAS A, BISBIKOU K.Investigation of the technology of historic mortars[J]. Journal of Cultural Heritage, 2000, 1(1): 45-58. [13] ZHOU X, DAI S B, HU Y, et al.Study on hydraulic lime mortar used for consolidation of Huashan rock paintings[J].Sci Conserv Archaeol, 2011(2): 1-7. (in Chinese) [14] LANAS J, PÉREZ BERNAL J L, BELLO M A, et al. Mechanical properties of natural hydraulic lime-based mortars[J]. Cem Concr Res, 2004, 34(12): 2191-2201. [15] GUO H, HAN R F, ZHAO J, et al.Selection experiment on the urgent conservation materials for the petroglyphs on the Flower mountain, Guangxi[J]. Sci Conserv Archaeol, 2006, 18(3): 18-25. (in Chinese) [16] GUO H, HAN R F, ZHAO J, et al.Pigment and the prevention of its fading on petroglyphs of the Flower mountain, Guangxi[J]. Sci Conserv Archaeol, 2005, 17(4): 7-14. (in Chinese) [17] MARAVELAKI-KALAITZAKIA P, BAKOLASB A, KARATASIOSC I, et al.Hydraulic lime mortars for the restoration of historic masonry in Crete[J]. Cem Concr Res, 2005, 35(8): 1577-1586. [18] LAWRENCE R M H, MAYS T J, WALKER P, et al. The use of TG to measure different concentrations of lime in non-hydraulic lime mortars[J]. J Therm Anal Calorim, 2006, 85(2): 377-382. [19] HANLEY R, PAVÍA S. A study of the workability of natural hydraulic lime mortars and its influence on strength[J]. Mater Struct, 2008, 41(2): 373-381.