留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性水硬性石灰基材料的制备与耐久性

李悦 于鹏超 刘金鹏 李虹

李悦, 于鹏超, 刘金鹏, 李虹. 改性水硬性石灰基材料的制备与耐久性[J]. 机械工程学报, 2017, 43(2): 269-277. doi: 10.11936/bjutxb2016050033
引用本文: 李悦, 于鹏超, 刘金鹏, 李虹. 改性水硬性石灰基材料的制备与耐久性[J]. 机械工程学报, 2017, 43(2): 269-277. doi: 10.11936/bjutxb2016050033
LI Yue, YU Pengchao, LIU Jinpeng, LI Hong. Preparation and Durability of Modified Hydraulic Lime-based Material[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 269-277. doi: 10.11936/bjutxb2016050033
Citation: LI Yue, YU Pengchao, LIU Jinpeng, LI Hong. Preparation and Durability of Modified Hydraulic Lime-based Material[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 269-277. doi: 10.11936/bjutxb2016050033

改性水硬性石灰基材料的制备与耐久性

doi: 10.11936/bjutxb2016050033
基金项目: 北京市属高等学校高层次人才引进与培养计划资助项目(CIT&TCD20150310)
详细信息
    作者简介:

    作者简介: 李悦(1972—), 男, 教授, 博士生导师, 主要从事建筑材料方面的研究, E-mail:liyue@bjut.edu.cn

    通讯作者:

    于鹏超(1990—), 男, 硕士研究生, 主要从事建筑材料方面的研究, E-mail:191429053@qq.com

  • 中图分类号: TU502

Preparation and Durability of Modified Hydraulic Lime-based Material

  • 摘要: 为了得到更加适宜于岩土文物保护加固的水硬性石灰材料,研究了掺加矿粉、外加剂和聚乙烯醇纤维的改性水硬性石灰的配合比优化设计、力学性能、水化硬化机理和耐久性. 研究发现:矿粉、外加剂和聚乙烯醇纤维能显著提高水硬性石灰的力学性能以及耐久性;经改性后的水硬性石灰试样D,其抗折强度、抗压强度和拉拔强度分别能达到3.27、15.45、0.61MPa,而且,经过耐水、耐盐和干湿循环试验后,仍然保持较高的力学性能,这对于岩土质文物的保护修复具有重大的意义.

     

  • 图  抗折强度随龄期的变化

    Figure  1.  Relationship between flexural strength and age

    图  抗压强度随龄期的变化

    Figure  2.  Relationship between compressive strength and age

    图  拉拔强度随龄期的变化

    Figure  3.  Relationship between pull strength and age

    图  抗折强度随龄期的变化

    Figure  4.  Relationship between flexural strength and age

    图  抗压强度随龄期的变化

    Figure  5.  Relationship between compressive strength and age

    图  拉拔强度随龄期的变化

    Figure  6.  Relationship between pull strength and age

    图  试样经水浸泡后抗折强度的变化

    Figure  7.  Flexural strength variation after water immersion

    图  试样经水浸泡后抗压强度的变化

    Figure  8.  Compressive strength variation after water immersion

    图  耐盐前后抗折强度的变化

    Figure  9.  Flexural strength variation before and after the salt

    图  10  耐盐前后抗压强度的变化

    Figure  10.  Compressive strength variation before and after the salt

    图  11  干湿循环前后抗折强度的变化

    Figure  11.  Flexural strength variation before and after dry-wet cycles

    图  12  干湿循环后试样抗压强度的变化

    Figure  12.  Compressive strength variation before and after dry-wet cycles

    图  13  矿粉的XRD分析图

    Figure  13.  XRD analysis chart of slag

    图  14  试样o和A的XRD分析图

    Figure  14.  XRD analysis of o and A samples

    图  15  o、A、B和D的SEM分析图

    Figure  15.  SEM analysis of o, A, B, C, D samples

    表  1  水硬性石灰和矿粉的化学分析结果

    Table  1.   Chemical compositions of the hydraulic lime and slag%

    成分 w(CaO) w(SiO2) w(Al2O3) w(MgO) w(Fe2O3) w(K2O) w(SO3) w(TiO2) w(loss)
    水硬性石灰 70.7 15.2 5.32 2.64 2.33 1.84 1.00 0.36 0.61
    矿粉 43.7 23.2 12.3 16.6 0.17 0.29 1.35 1.63 0.76
    下载: 导出CSV

    表  2  聚乙烯醇纤维的性能参数

    Table  2.   Properties of the polyvinyl alcohol fiber

    直径/μm 密度/(g·cm-3) 抗拉强度/MPa 长度/mm 材料形状 分散性/级
    18±3 1.3 1860 6~12 束状单丝 1
    下载: 导出CSV

    表  3  水硬性石灰-矿粉复合体系的配合比

    Table  3.   Mix proportion of hydraulic lime-slag system

    编号 w(石灰)/% w(矿粉)/% 水胶比
    o 100 0 0.51
    a 70 30 0.50
    b 60 40 0.50
    c 50 50 0.48
    d 40 60 0.47
    e 30 70 0.47
    f 20 80 0.47
    下载: 导出CSV

    表  4  掺外加剂和纤维的水硬性石灰-矿粉体系的配合比

    Table  4.   Mix proportion of hydraulic lime-slag system mixing with admixtures and fiber

    编号 w(石灰)/% w(矿粉)/% w(黏性剂)/% w(抗裂剂)/% w(触变剂)/% w(黏结剂)/% w(纤维)/% 水胶比
    o 100 0 0.0 0.0 0.0 0.0 0.00 0.51
    A 40 60 0.0 0.0 0.0 0.0 0.00 0.47
    B 40 60 0.8 0.8 0.8 0.8 0.00 0.51
    C 40 60 0.8 0.8 0.8 0.8 0.25 0.51
    D 40 60 0.8 0.8 0.8 0.8 0.50 0.51
    E 40 60 0.8 0.8 0.8 0.8 0.75 0.52
    F 40 60 0.8 0.8 0.8 0.8 1.00 0.52
    G 40 60 0.8 0.8 0.8 0.8 1.25 0.52
    H 40 60 0.8 0.8 0.8 0.8 1.50 0.52
    下载: 导出CSV

    表  5  典型配合比试样50d力学性能

    Table  5.   Fiftieth day physical mechanical properties of typical mix proportion

    试样编号 抗折强度/MPa 提高率/% 抗压强度/MPa 提高率/% 拉拔强度/MPa 提高率/%
    o 0.56 3.69 0.162
    A 1.86 232 16.26 340 0.168 3.7
    B 2.46 339 13.20 257 0.541 233.0
    D 3.27 483 15.45 318 0.610 276.0
    下载: 导出CSV
  • [1] ZHAO L Y.The modification research of two kinds of traditional materials used on preservation of the stone and earthen cultural relics[D]. Lanzhou: Lanzhou University, 2012: 8-87. (in Chinese)
    [2] LI L, ZHAO L Y, WANG J H, et al.Study on the physical and mechanical properties of two kinds of traditional silicate materials of China ancient buildings[J]. Chin J Rock Mech Eng, 2011, 31(10): 2120-2127. (in Chinese)
    [3] ZHOU S L.Organic polymer materials and requirements for the protection of cultural relics[J].Sichuan Culture Relics, 2003(3): 94-96. (in Chinese)
    [4] CHIARI G.Chemical surface treatments and capping technique of earthen structures: along-term evaluation[C]//6th International Conference on the Conservation of Earthen Architecture. Las Cruces: [s.n.], 1990: 267-273.
    [5] PENG F S, Natural hydraulic limes[J].Lime, 2009(3): 44-48. (in Chinese)
    [6] HUGHES J J, CUTHBERT S J.The petrography and micro-structure of medieval lime mortars from the west of Scotland implications for the formulation of repair and replacement mortars[J]. Mater Struct, 2000, 33(11): 594-600.
    [7] ADEL E, BALL R J, CARTER M A, et al.Effect of dewatering on the strength of lime and cement mortars[J]. J Am Ceram Soc, 2010, 93(7): 2074-2081.
    [8] PAVÍA S, TOOMEY B. Influence of the aggregate quality on the physical properties of natural feebly-hydraulic lime mortars[J]. Mater Struct, 2008, 41(3): 559-569.
    [9] SABBIONI C, ZAPPIA G, RIONTINO C, et al.Atmospheric deterioration of ancient and modern hydraulic mortars[J]. Atmos Environ, 2001, 35(3): 539-548.
    [10] ALVAREZ V I P. Performance analysis of hydraulic lime grouts for masonry repair[M]. Philadelphia: University of Pennsylvania, 2006: 16-63.
    [11] MOROPOULOU A, BAKOLAS A, BISBIKOU K.Physico-chemical adhesion and cohesion bonds in joint mortars imparting durability to the historic structures[J]. Construction and Building Materials, 2000, 14(1): 35-46.
    [12] MOROPOULOU A, BAKOLAS A, BISBIKOU K.Investigation of the technology of historic mortars[J]. Journal of Cultural Heritage, 2000, 1(1): 45-58.
    [13] ZHOU X, DAI S B, HU Y, et al.Study on hydraulic lime mortar used for consolidation of Huashan rock paintings[J].Sci Conserv Archaeol, 2011(2): 1-7. (in Chinese)
    [14] LANAS J, PÉREZ BERNAL J L, BELLO M A, et al. Mechanical properties of natural hydraulic lime-based mortars[J]. Cem Concr Res, 2004, 34(12): 2191-2201.
    [15] GUO H, HAN R F, ZHAO J, et al.Selection experiment on the urgent conservation materials for the petroglyphs on the Flower mountain, Guangxi[J]. Sci Conserv Archaeol, 2006, 18(3): 18-25. (in Chinese)
    [16] GUO H, HAN R F, ZHAO J, et al.Pigment and the prevention of its fading on petroglyphs of the Flower mountain, Guangxi[J]. Sci Conserv Archaeol, 2005, 17(4): 7-14. (in Chinese)
    [17] MARAVELAKI-KALAITZAKIA P, BAKOLASB A, KARATASIOSC I, et al.Hydraulic lime mortars for the restoration of historic masonry in Crete[J]. Cem Concr Res, 2005, 35(8): 1577-1586.
    [18] LAWRENCE R M H, MAYS T J, WALKER P, et al. The use of TG to measure different concentrations of lime in non-hydraulic lime mortars[J]. J Therm Anal Calorim, 2006, 85(2): 377-382.
    [19] HANLEY R, PAVÍA S. A study of the workability of natural hydraulic lime mortars and its influence on strength[J]. Mater Struct, 2008, 41(2): 373-381.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  40
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-13
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回