留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温退火降低碳纳米管接触电阻的实验研究

安立宝 李文 陈佳

安立宝, 李文, 陈佳. 高温退火降低碳纳米管接触电阻的实验研究[J]. 机械工程学报, 2017, 43(2): 294-298. doi: 10.11936/bjutxb2016050060
引用本文: 安立宝, 李文, 陈佳. 高温退火降低碳纳米管接触电阻的实验研究[J]. 机械工程学报, 2017, 43(2): 294-298. doi: 10.11936/bjutxb2016050060
AN Libao, LI Wen, CHEN Jia. Experimental Research of Reducing the Contact Resistance of Carbon Nanotubes by High Temperature Annealing[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 294-298. doi: 10.11936/bjutxb2016050060
Citation: AN Libao, LI Wen, CHEN Jia. Experimental Research of Reducing the Contact Resistance of Carbon Nanotubes by High Temperature Annealing[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 294-298. doi: 10.11936/bjutxb2016050060

高温退火降低碳纳米管接触电阻的实验研究

doi: 10.11936/bjutxb2016050060
基金项目: 国家自然科学基金资助项目(51172062,51472074);河北省“百人计划”资助项目(E2012100005)
详细信息
    作者简介:

    作者简介: 安立宝(1965—), 男, 教授, 主要从事微纳制造技术、先进纳米材料特性及应用方面的研究, E-mail:lan@ncst.edu.cn

  • 中图分类号: TN4

Experimental Research of Reducing the Contact Resistance of Carbon Nanotubes by High Temperature Annealing

  • 摘要: 将碳纳米管有效地集成到微纳器件上实现组装是碳纳米管在众多领域得以应用的先决条件,组装后较高的接触电阻成为影响碳纳米管器件性能的重要因素,为了降低碳纳米管与电极之间的接触电阻,采用高温退火法对组装后的碳纳米管进行处理. 首先,通过介电电泳法组装碳纳米管;其次,利用正交试验设计和方差分析研究高温退火过程中退火温度、保温时间和升温速率对降低碳纳米管接触电阻的影响,并获得了降低接触电阻的最优参数组合;最后,对退火前后碳纳米管的I-V特性进行测量、分析. 结果表明:高温退火可以简单、高效地降低碳纳米管的接触电阻,退火温度是影响降阻效果的主要因素,退火处理后接触电阻的下降幅度最高可达91.59%,组装的碳纳米管退火前后的I-V特性曲线均呈现良好的线性.

     

  • 图  碳纳米管在电路中的组装形态

    Figure  1.  Morphology of assembled CNTs in circuits

    图  组装后的碳纳米管在不同时段的I-V曲线

    Figure  2.  I-V curves of assembled CNTs at different times

    表  1  退火温度、保温时间、升温速率的水平选取

    Table  1.   Levels of annealing temperature, annealing time, and heating rate

    水平 退火温度/℃ 保温时间/min 升温速率/(℃·min-1)
    1 200 15 10
    2 300 25 15
    3 400 35 20
    下载: 导出CSV

    表  2  正交试验设计方案

    Table  2.   Orthogonal experiment design

    编号 退火温度/℃ 保温时间/min 升温速率/(℃·min-1) 电阻下降幅度/%
    1 200 15 10 53.48
    2 200 25 15 64.32
    3 200 35 20 66.15
    4 300 15 15 90.47
    5 300 25 20 91.32
    6 300 35 10 71.91
    7 400 15 20 91.59
    8 400 25 10 79.73
    9 400 35 15 75.55
    下载: 导出CSV

    表  3  极差分析结果

    Table  3.   Results of range analysis

    K/R 退火温度/ 保温时间/min 升温速率/(℃·min-1)
    K1 53.48+64.32+66.15=183.95 53.48+90.47+91.59=235.54 53.48+71.91+79.73=205.12
    K2 90.47+91.32+71.91=253.70 64.32+91.32+79.73=235.37 64.32+90.47+75.55=230.34
    K3 91.59+79.73+75.55=246.87 66.15+71.91+75.55=213.61 66.15+91.32+91.59=249.06
    K¯1=K1/3 183.95/3=61.32 235.54/3=78.51 205.12/3=68.37
    K¯2=K2/3 253.70/3=84.57 235.37/3=78.46 230.34/3=76.78
    K¯3=K3/3 246.87/3=82.29 213.61/3=71.20 249.06/3=83.02
    R=max{K¯i}-min{K¯i} 84.57-61.31=23.26 78.51-71.20=7.31 83.02-68.37=14.65
    注:K1K2K3是各因素在水平1、2、3下的电阻下降幅度之和;K¯1K¯2K¯3K1K2K3的平均值;R是极差值.
    下载: 导出CSV

    表  4  方差分析结果

    Table  4.   Results of variance analysis

    项目 偏差平方和S 自由度f 方差V F 显著性
    退火温度 985.626 2 492.813 23.067 *
    保温时间 106.050 2 53.025 2.482
    升温速率 324.134 2 162.067 7.586 [*]
    误差e 42.729 2 21.365
    总和T 1458.540 8
    下载: 导出CSV
  • [1] WU Z, WANG L, SUNDEN B, et al.Aqueous carbon nanotube nanofluids and their thermal performance in a helical heat exchanger[J]. Applied Thermal Engineering, 2016, 96(1): 364-371.
    [2] XI H, SONG H Y, ZOU R.Simulation of mechanical properties of carbon nanotubes with superlattice structure[J]. Current Applied Physics, 2015, 15(10): 1216-1221.
    [3] MISAK H E, MALL S.Electrical conductivity, strength and microstructure of carbon nanotube multi-yarns[J]. Materials and Design, 2015, 75(6): 76-84.
    [4] KHARITONOV A P, SIMBIRTSEVA G V, TKACHEV A G, et al.Reinforcement of epoxy resin composites with fluorinated carbon nanotubes[J]. Composites Science and Technology, 2015, 107(2): 162-168.
    [5] HILL F A, HAVEL T F, LASHMORE D, et al.Storing energy and powering small systems with mechanical springs made of carbon nanotube yarn[J]. Energy, 2014, 76(11): 318-325.
    [6] AN L, YANG X, CHANG C.On contact resistance of carbon nanotubes[J]. International Journal of Theoretical and Applied Nanotechnology, 2013, 1(2): 30-40.
    [7] ROSCA I D, HOA S V.Method for reducing contact resistivity of carbon nanotube-containing epoxy adhesives for aerospace applications[J]. Composites Science and Technology, 2011, 71(2): 95-100.
    [8] OCHIAI Y, ENOMOTO R, ISHII S, et al.Thermal annealing effect in multi-wall carbon nanotubes[J]. Physica B: Condensed Matter, 2002, 323(1/2/3/4): 256-258.
    [9] DONG L, YOUKEY S, BUSH J, et al.Effects of local Joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes[J]. Journal of Applied Physics, 2007, 101(2): 024320.
    [10] ANDO A, SHIMIZU T, ABE H, et al.Improvement of electrical contact at carbon nanotube/Pt by selective electron irradiation[J]. Physica E: Low-dimensional Systems and Nanostructures, 2004, 24(1): 6-9.
    [11] LIU X, WU Y, SU Y, et al.Enhanced electron field emission characteristics of single-walled carbon nanotube films by ultrasonic bonding[J]. Physica E: Low-dimensional Systems and Nanostructures, 2014, 63(9): 165-168.
    [12] XU Y, SUHIR E, ZHANG Y.Effect of rapid thermal annealing (RTA) on thermal properties of carbon nanofibre (CNF) arrays[J]. Journal of Physics D: Applied Physics, 2006, 39(22): 4878-4885.
    [13] WONG Y M, KANG W P, DAVIDSON J L, et al.Performance enhancement of carbon nanotubes vacuum field emission triode amplifier by post-synthesis treatment[J]. Diamond and Related Materials, 2007, 16(4/5/6/7): 1403-1407.
    [14] AN L, FRIEDRICH C.Dielectrophoretic assembly of carbon nanotubes and stability analysis[J]. Progress in Natural Science: Materials International, 2013, 23(4): 367-373.
    [15] AN L, FRIEDRICH C R.Process parameters and their relations for the dielectrophoretic assembly of carbon nanotubes[J]. Journal of Applied Physics, 2009, 105(7): 074314.
    [16] WU X, LEUNG D Y C. Optimization of biodiesel production from camelina oil using orthogonal experiment[J]. Applied Energy, 2011, 88(11): 3615-3624.
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  31
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-23
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回