Experimental Research of Reducing the Contact Resistance of Carbon Nanotubes by High Temperature Annealing
-
摘要: 将碳纳米管有效地集成到微纳器件上实现组装是碳纳米管在众多领域得以应用的先决条件,组装后较高的接触电阻成为影响碳纳米管器件性能的重要因素,为了降低碳纳米管与电极之间的接触电阻,采用高温退火法对组装后的碳纳米管进行处理. 首先,通过介电电泳法组装碳纳米管;其次,利用正交试验设计和方差分析研究高温退火过程中退火温度、保温时间和升温速率对降低碳纳米管接触电阻的影响,并获得了降低接触电阻的最优参数组合;最后,对退火前后碳纳米管的I-V特性进行测量、分析. 结果表明:高温退火可以简单、高效地降低碳纳米管的接触电阻,退火温度是影响降阻效果的主要因素,退火处理后接触电阻的下降幅度最高可达91.59%,组装的碳纳米管退火前后的I-V特性曲线均呈现良好的线性.Abstract: Integrating carbon nanotubes(CNTs) into micro- and nano- devices is a critical step for applying CNTs in many fields. The high contact resistance of assembled CNTs is an important factor influencing the performance of CNT-based devices. It is possible to reduce the contact resistant of CNTs by using high temperature annealing. First, CNTs were assembled by dielectrophoresis; Second, the effects of annealing temperature, annealing time, and heating rate of reducing the contact resistance of CNTs were investigated by using orthogonal experiment design and variance analysis, and the optimal parameter combination for reducing the contact resistance was obtained; Finally, the I-V characteristic before and after annealing were measured respectively. Results show that the contact resistant of CNTs can be reduced efficiently by using high temperature annealing, and the annealing temperature is the leading factor causing the reduction of the resistance. After annealing, the contact resistance can be reduced at the most by 91.59%. The I-V curves of assembled CNTs are both linear before and after annealing.
-
表 1 退火温度、保温时间、升温速率的水平选取
Table 1. Levels of annealing temperature, annealing time, and heating rate
水平 退火温度/℃ 保温时间/min 升温速率/(℃·min-1) 1 200 15 10 2 300 25 15 3 400 35 20 表 2 正交试验设计方案
Table 2. Orthogonal experiment design
编号 退火温度/℃ 保温时间/min 升温速率/(℃·min-1) 电阻下降幅度/% 1 200 15 10 53.48 2 200 25 15 64.32 3 200 35 20 66.15 4 300 15 15 90.47 5 300 25 20 91.32 6 300 35 10 71.91 7 400 15 20 91.59 8 400 25 10 79.73 9 400 35 15 75.55 表 3 极差分析结果
Table 3. Results of range analysis
K/R 退火温度/℃ 保温时间/min 升温速率/(℃·min-1) K1 53.48+64.32+66.15=183.95 53.48+90.47+91.59=235.54 53.48+71.91+79.73=205.12 K2 90.47+91.32+71.91=253.70 64.32+91.32+79.73=235.37 64.32+90.47+75.55=230.34 K3 91.59+79.73+75.55=246.87 66.15+71.91+75.55=213.61 66.15+91.32+91.59=249.06 =K1/3 183.95/3=61.32 235.54/3=78.51 205.12/3=68.37 =K2/3 253.70/3=84.57 235.37/3=78.46 230.34/3=76.78 =K3/3 246.87/3=82.29 213.61/3=71.20 249.06/3=83.02 R=max{ }-min{ } 84.57-61.31=23.26 78.51-71.20=7.31 83.02-68.37=14.65 注:K1、K2、K3是各因素在水平1、2、3下的电阻下降幅度之和; 、 、 是K1、K2、K3的平均值;R是极差值. 表 4 方差分析结果
Table 4. Results of variance analysis
项目 偏差平方和S 自由度f 方差V F值 显著性 退火温度 985.626 2 492.813 23.067 * 保温时间 106.050 2 53.025 2.482 升温速率 324.134 2 162.067 7.586 [*] 误差e 42.729 2 21.365 总和T 1458.540 8 -
[1] WU Z, WANG L, SUNDEN B, et al.Aqueous carbon nanotube nanofluids and their thermal performance in a helical heat exchanger[J]. Applied Thermal Engineering, 2016, 96(1): 364-371. [2] XI H, SONG H Y, ZOU R.Simulation of mechanical properties of carbon nanotubes with superlattice structure[J]. Current Applied Physics, 2015, 15(10): 1216-1221. [3] MISAK H E, MALL S.Electrical conductivity, strength and microstructure of carbon nanotube multi-yarns[J]. Materials and Design, 2015, 75(6): 76-84. [4] KHARITONOV A P, SIMBIRTSEVA G V, TKACHEV A G, et al.Reinforcement of epoxy resin composites with fluorinated carbon nanotubes[J]. Composites Science and Technology, 2015, 107(2): 162-168. [5] HILL F A, HAVEL T F, LASHMORE D, et al.Storing energy and powering small systems with mechanical springs made of carbon nanotube yarn[J]. Energy, 2014, 76(11): 318-325. [6] AN L, YANG X, CHANG C.On contact resistance of carbon nanotubes[J]. International Journal of Theoretical and Applied Nanotechnology, 2013, 1(2): 30-40. [7] ROSCA I D, HOA S V.Method for reducing contact resistivity of carbon nanotube-containing epoxy adhesives for aerospace applications[J]. Composites Science and Technology, 2011, 71(2): 95-100. [8] OCHIAI Y, ENOMOTO R, ISHII S, et al.Thermal annealing effect in multi-wall carbon nanotubes[J]. Physica B: Condensed Matter, 2002, 323(1/2/3/4): 256-258. [9] DONG L, YOUKEY S, BUSH J, et al.Effects of local Joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes[J]. Journal of Applied Physics, 2007, 101(2): 024320. [10] ANDO A, SHIMIZU T, ABE H, et al.Improvement of electrical contact at carbon nanotube/Pt by selective electron irradiation[J]. Physica E: Low-dimensional Systems and Nanostructures, 2004, 24(1): 6-9. [11] LIU X, WU Y, SU Y, et al.Enhanced electron field emission characteristics of single-walled carbon nanotube films by ultrasonic bonding[J]. Physica E: Low-dimensional Systems and Nanostructures, 2014, 63(9): 165-168. [12] XU Y, SUHIR E, ZHANG Y.Effect of rapid thermal annealing (RTA) on thermal properties of carbon nanofibre (CNF) arrays[J]. Journal of Physics D: Applied Physics, 2006, 39(22): 4878-4885. [13] WONG Y M, KANG W P, DAVIDSON J L, et al.Performance enhancement of carbon nanotubes vacuum field emission triode amplifier by post-synthesis treatment[J]. Diamond and Related Materials, 2007, 16(4/5/6/7): 1403-1407. [14] AN L, FRIEDRICH C.Dielectrophoretic assembly of carbon nanotubes and stability analysis[J]. Progress in Natural Science: Materials International, 2013, 23(4): 367-373. [15] AN L, FRIEDRICH C R.Process parameters and their relations for the dielectrophoretic assembly of carbon nanotubes[J]. Journal of Applied Physics, 2009, 105(7): 074314. [16] WU X, LEUNG D Y C. Optimization of biodiesel production from camelina oil using orthogonal experiment[J]. Applied Energy, 2011, 88(11): 3615-3624.