留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于大气PM2.5污染的建筑外窗缝隙通风换气次数动态变化特性

陈超 万亚丽 陈紫光 蔺洁 王亚峰 吴玉琴 赵力

陈超, 万亚丽, 陈紫光, 蔺洁, 王亚峰, 吴玉琴, 赵力. 基于大气PM2.5污染的建筑外窗缝隙通风换气次数动态变化特性[J]. 机械工程学报, 2017, 43(2): 285-293. doi: 10.11936/bjutxb2016060068
引用本文: 陈超, 万亚丽, 陈紫光, 蔺洁, 王亚峰, 吴玉琴, 赵力. 基于大气PM2.5污染的建筑外窗缝隙通风换气次数动态变化特性[J]. 机械工程学报, 2017, 43(2): 285-293. doi: 10.11936/bjutxb2016060068
CHEN Chao, WAN Yali, CHEN Ziguang, LIN Jie, WANG Yafeng, WU Yuqin, ZHAO Li. Dynamic Characteristics in Air Infiltration Rate With Respect to Atmospheric PM2.5 Pollution[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 285-293. doi: 10.11936/bjutxb2016060068
Citation: CHEN Chao, WAN Yali, CHEN Ziguang, LIN Jie, WANG Yafeng, WU Yuqin, ZHAO Li. Dynamic Characteristics in Air Infiltration Rate With Respect to Atmospheric PM2.5 Pollution[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 285-293. doi: 10.11936/bjutxb2016060068

基于大气PM2.5污染的建筑外窗缝隙通风换气次数动态变化特性

doi: 10.11936/bjutxb2016060068
基金项目: 国家“十二五”科技支撑计划资助项目(2012BAJ02B02)
详细信息
  • 中图分类号: TU831.1;TU834.6

Dynamic Characteristics in Air Infiltration Rate With Respect to Atmospheric PM2.5 Pollution

  • 摘要: 为了动态评价建筑外窗缝隙通风条件下室外PM2.5污染对室内环境的影响规律及其渗透通风特性,依据研究团队2013年9月到2014年8月基于建筑外窗缝隙渗透通风(建筑外门窗关闭、无机械通风)且室内无污染源条件下关于北京地区某临街办公建筑室内外PM2.5质量浓度水平与室外气象参数(空气干球温度、相对湿度、风速)的动态变化实时监测数据,结合质量平衡方程和数理统计方法提出了一种基于大量实测数据反演建筑外窗缝隙通风换气次数动态变化特性的评价模型,实测结果验证了该模型的有效性. 研究结果表明:当建筑外窗结构特征和房间结构特征一定时(实测建筑穿透系数P为0.93±0.01、自然沉降率k为0.10±0.03),静稳天气时的建筑外窗缝隙通风换气次数平均值约为0.10h-1,对应的室内外PM2.5质量浓度比I/O约为0.43;微风天气时的平均值约为0.22h-1,对应的I/O约为0.56;和风天气时的平均值约为0.39h-1,对应的I/O约为0.62. 研究结果可为室内人群健康风险评估以及建筑室内通风净化系统优化设计与节能运行提供重要参考.

     

  • 图  室外气象参数对室内外PM2.5质量浓度及I/O的影响[12]

    Figure  1.  Influence of outdoormetrological parameters on I/O ratio

    图  不同压差与缝高下不同粒径颗粒物穿透系数[8]

    Figure  2.  Particle penetration factor as a function of diameter, crack height, and pressure difference in the window crack

    图  监测点位置与房间平面图示意图

    Figure  3.  Location and floor plans of the monitored office

    图  室内CO2示踪气体衰减法实测结果

    Figure  4.  Decay curve of the indoor CO2 concentration

    图  缝隙通风换气次数推算值

    Figure  5.  Calculated value of air exchange rate

    图  室外风速变化与缝隙通风换气次数

    Figure  6.  Influence of outdoor wind speed on air exchange rate

    图  室外气象参数变化与缝隙通风换气次数

    Figure  7.  Changes of the air exchange rate with the outdoor wind speed and relative humidity

    图  室内外PM2.5质量浓度与缝隙通风换气次数月变化

    Figure  8.  Monthly change of indoor and outdoor PM2.5 mass concentrations and the corresponding air exchange rate

    图  室外气象参数月变化情况

    Figure  9.  Monthly change of outdoor meteorological parameters

    表  1  北京地区实测期间天气情况

    Table  1.   Summary table of the weather type classification in Beijing

    情景 风力等级 对应风速/(m·s-1) 实测风速平均值/(m·s-1) 空气相对湿度平均值/% 室外PM2.5质量浓度/(μg·m-3) 室外污染水平
    1 0 0.0~0.2 0.1 72 255 严重污染
    2 1 0.3~1.5 1.1 65 221 重度污染
    3 2 1.6~3.3 2.3 59 193 重度污染
    4 3 3.4~5.4 4.1 49 125 中度污染
    5 4 5.5~7.9 6.3 42 65
    下载: 导出CSV
  • [1] CHEN C, ZHAO B.Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor[J]. Atmospheric Environment, 2011, 45(2): 275-288.
    [2] KUO H, SHEN H.Indoor and outdoor PM2.5 and PM10 concentrations in the air during a dust storm[J]. Building and Environment, 2010, 45(3): 610-614.
    [3] MATSON U.Indoor and outdoor concentrations of ultrafine particles in some Scandinavian rural and urban areas[J]. Science of The Total Environment, 2005, 343(1/2/3): 169-176.
    [4] TUNG T C, CHAO C Y, BURNETT J.A methodology to investigate the particulate penetration coefficient through building shell[J]. Atmospheric Environment, 1999, 33(6): 881-893.
    [5] LIU D L, NAZAROFF W W.Particle penetration through building cracks[J]. Aerosol Science and Technology, 2003, 37(7): 565-573.
    [6] KOUTRAKIS P, BRIGGS S, LEADERER B P.Source apportionment of indoor aerosols in Suffolk and Onondaga counties, New-York[J]. Environmental Science & Technology, 1992, 26(3): 521-527.
    [7] YAMAMOTO Y N, SHENDELL D G, WINER A M, et al.Residential air exchange rates in three major US metropolitan areas: results from the relationship among indoor, outdoor, and personal air study 1999—2001[J]. Indoor Air, 2010, 20(1): 85-90.
    [8] LIU D L, NAZAROFF W W.Modeling pollutant penetration across building envelopes[J]. Atmospheric Environment, 2001, 35(26): 4451-4462.
    [9] ZHAO B, ZENG J.A simple model to study the influence of fluctuating airflow on the effective air exchange rate when using natural ventilation[J]. Building Simulation, 2009, 2(1): 63-66.
    [10] LI Y, CHEN Z.A balance-point method for assessing the effect of natural ventilation on indoor particle concentrations[J]. Atmospheric Environment, 2003, 37(30): 4277-4285.
    [11] HONG Y F, DAI Z Z, CHEN X, et al.Estimation of air exchange frequency in the condition of natural indoor ventilation[J]. Journal of Environment and Health, 2005, 22(1): 47-49. (in Chinese)
    [12] ZHAO L, CHEN C, WANG P, et al.Influence of atmospheric fine particulate matter (PM2.5) pollution on indoor environment during winter in Beijing[J]. Building and Environment, 2015, 87: 283-291.
    [13] WANG Y F, CHEN C, CHEN Z G, et al.The evaluation model of PM2.5 penetration and deposition based on the air infiltration through the window gaps[J]. China Environmental Science, 2016, 36(7): 1960-1966. (in Chinese)
    [14] WANG Y, CHEN C, WANG P, et al.Experimental investigation on indoor/outdoor PM2.5 concentrations of an office building located in Guangzhou[J]. Procedia Engineering, 2015, 121: 333-340.
    [15] ZHAO L, CHEN C, WANG P, et al.Characteristics of change of PM2.5 mass concentration indoors and outdoors in an office building in Beijing in summer and winter[J]. Building Science, 2015, 31(4): 32-39. (in Chinese)
    [16] CHEN C, WANG P, CHEN Z G, et al.Impact of different structure characteristics of external windows on indoor PM2.5 concentrations under infiltration ventilating[J]. Journal of Beijing University of Technology, 2016, 42(4): 601-608. (in Chinese)
    [17] CARRILHO J D, MATEOUS M, BATTERMAN S, et al.Air exchange rates from atmospheric CO2 daily cycle[J]. Energy and Buildings, 2015, 92: 188-194.
    [18] CUI S, COHEN M, STABAT P, et al.CO2 tracer gas concentration decay method for measuring air change rate[J]. Building and Environment, 2015, 84: 162-169.
    [19] BENNETT D H, KOUTRAKIS P.Determining the infiltration of outdoor particles in the indoor environment using a dynamic model[J]. Journal of Aerosol Science, 2006, 37(6): 766-785.
    [20] LOPEZ APARICIO S, SMOLIKJ, MASKOVA L, et al.Relationship of indoor and outdoor air pollutants in a naturally ventilated historical building envelope[J]. Building and Environment, 2011, 46(7): 1460-1468.
    [21] HAHN I, BRIXEY L A, WIENER R W, et al.Parameterization of meteorological variables in the process of infiltration of outdoor ultrafine particles into a residential building[J]. Journal of Environmental Monitoring, 2009, 11(12): 2192-2200.
    [22] BRANIS M, REZACOVA P, DOMASOVA M.The effect of outdoor air and indoor human activity on mass concentrations of PM10, PM2.5, and PM1 in a classroom[J]. Environmental Research, 2005, 99(2): 143-149.
    [23] JENG C, KINDZIERSKI W B, SMITH D W.Particle penetration through inclined and L-shaped cracks[J]. Journal of Environmental Engineering-Asce, 2007, 133(3): 331-339.
    [24] CHAO C, WAN M P, CHENG E.Penetration coefficient and deposition rate as a function of particle size in non-smoking naturally ventilated residences[J]. Atmospheric Environment, 2003, 37(30): 4233-4241.
    [25] SHI S S, JI W J, ZHAO B, et al.Comparison of indoor concentration of and exposure to PM2.5 between residences with different ventilation modes based on simulation[J]. HV&AC, 2013, 43(12): 34-38. (in Chinese)
    [26] HE C R, MORAWSKA L, GILBERT D.Particle deposition rates in residential houses[J]. Atmospheric Environment, 2005, 39(21): 3891-3899.
    [27] ENGINEERS R A C. 1993 ASHRAE Handbook: Fundamentals[M]. SI ed.[S.l.]: ASHRAE, 1993.
    [28] TIAN L, ZHANG G, LIN Y, et al.Mathematical model of particle penetration through smooth/rough building envelop leakages[J]. Building and Environment, 2009, 44(6): 1144-1149.
    [29] MLECZKOWSKA A, STROJECKI M, BRATASZ L, et al.Particle penetration and deposition inside historical churches[J]. Building and Environment, 2016, 95: 291-298.
    [30] CHI J, LI P, YANG C, et al.A theoretical and experimental study on all-normal-dispersion Yb-doped mode-locked fiber lasers[J]. Chinese Physics B, 2013, 22(4): 268-273.
    [31] GUO H, MORASKA L, HE C, et al.Impact of ventilation scenario on air exchange rates and on indoor particle number concentrations in an air-conditioned classroom[J]. Atmospheric Environment, 2008, 42(4): 757-768.
    [32] 朱炳海. 气象学词典[M]. 上海: 上海辞书出版社, 1985.
    [33] FROMME H, TWARDELLA D, DIETRICH S, et al.Particulate matter in the indoor air of classrooms—exploratory results from Munich and surrounding area[J]. Atmospheric Environment, 2007, 41(4): 854-866.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  79
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-22
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回