留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京地区多层含水层中施工降水诱发地面沉降的实时预测

王军辉 陶连金 韩煊 周宏磊

王军辉, 陶连金, 韩煊, 周宏磊. 北京地区多层含水层中施工降水诱发地面沉降的实时预测[J]. 机械工程学报, 2017, 43(2): 251-260. doi: 10.11936/bjutxb2016070046
引用本文: 王军辉, 陶连金, 韩煊, 周宏磊. 北京地区多层含水层中施工降水诱发地面沉降的实时预测[J]. 机械工程学报, 2017, 43(2): 251-260. doi: 10.11936/bjutxb2016070046
WANG Junhui, TAO Lianjin, HAN Xuan, ZHOU Honglei. Real Time Prediction of Subsidence Induced by Groundwater Lowering in Construction Through Multi-layered Aquifer in Beijing Area[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 251-260. doi: 10.11936/bjutxb2016070046
Citation: WANG Junhui, TAO Lianjin, HAN Xuan, ZHOU Honglei. Real Time Prediction of Subsidence Induced by Groundwater Lowering in Construction Through Multi-layered Aquifer in Beijing Area[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 251-260. doi: 10.11936/bjutxb2016070046

北京地区多层含水层中施工降水诱发地面沉降的实时预测

doi: 10.11936/bjutxb2016070046
基金项目: 国家自然科学基金资助项目(41572276,41272337);北京市自然科学基金资助项目(140004);北京市科技计划资助项目(Z161100001216011)
详细信息
    作者简介:

    作者简介: 王军辉(1973—), 男, 教授级高级工程师, 主要从事水文地质与工程地质方面的研究,E-mail:wjh1223@sina.com

  • 中图分类号: TU42;TU46

Real Time Prediction of Subsidence Induced by Groundwater Lowering in Construction Through Multi-layered Aquifer in Beijing Area

  • 摘要: 施工降水诱发地面沉降是当前主要岩土工程风险之一,对于以多层含水层为典型水文地质特征的北京地区,这类问题尤为突出. 为准确而便捷地进行该类问题预测,首先基于渗流理论和有效应力原理,分析了多层含水层区降水过程中不同层位的压缩量变化规律及主要影响因素,并建立了相应的渗流-压缩耦合数学模型;根据地下水赋存与运动原理,结合北京地区水文地质特征,提出了采用主控含水层来确定耦合模型下边界的新方法,实现了渗流和地层压缩2个物理力学过程在特定地质条件下的耦合,在保证模型科学性和工程精度的同时,降低了实际分析工作的难度,提高了分析模型的实用性;在弱透水层释水率这一重要模型参数取值方面,根据地下水动力学和相关实测资料,研究了既有计算公式存在的误差及其主要原因,并结合北京地方经验,提出了相应的修正方法,进一步提高了模型分析精度. 最后,以北京地区某实际工程为例,进行了多层含水层中降水诱发地面沉降的精细模拟,并对数值结果合理性进行了分析.

     

  • 图  多层含水层降水诱发地面沉降的概念模型(以弱透水层双面排水为例)

    Figure  1.  Conceptual model of subsidence induced by groundwater lowering in construction through multi-layered aquifer (a case that the interbed is drained to double side)

    图  多层含水层区的主控含水层概念图(以承压水为例)

    Figure  2.  Concept profile of the main aquifer in the area of multi-layered aquifer (taking the confined water as an example)

    图  利用黏性土压缩系数计算的释水率(以北京CBD某处40m深度土样为例)

    Figure  3.  Specific storage calculated by the compression coefficient of clayed soil (taking soil samples 40m below Beijing CBD as an example)

    图  基坑与地层、地下水分布相对位置的剖面示意图(水头对应时间为2014年3月)

    Figure  4.  Schematic diagram of the relative position of pit and the distribution stratum and groundwater (the time of water level corresponds to March, 2014)

    图  地下水控制方案示意图

    Figure  5.  Schematic map of the groundwater control scheme

    图  有限差分网格剖分情况示意图

    Figure  6.  Sketch of finite difference mesh

    图  降水过程中基坑中心处各层地下水位变化规律

    Figure  7.  Changes of groundwater level of each aquifer at the center of pit virus time during dewatering

    图  降水稳定后潜水、层间水和潜水-承压水沿A-A'剖面水头分布图

    Figure  8.  Hydraulic level distribution of phreatic water,interlayered water and phreatic-confined water along A-A' profile after seepage field induced by dewatering is steady

    图  降水过程中基坑中心O处各层土压缩量随时间变化图

    Figure  9.  Changes of compression of each layers at the center of the pit virus time during dewatering

    图  10  降水180d后第1~6层土压缩量沿A-A'剖面分布

    Figure  10.  Compaction distribution of No.1~No.6 layer along A-A' Profile 180d after dewatering

    图  11  降水180d后基坑附近地面沉降量等值线图

    Figure  11.  Contour of the subsidence around the pit 180d after dewatering

    表  1  模型参数取值一览表

    Table  1.   Table of values of model parameters

    概化后的地层编号 K/(m·d-1) μs/m-1 μ's/m-1
    1 30.000 0.0002 0.00020
    2 0.010 0.0033* 0.00010
    3 25.000 0.0001 0.00001
    4 0.005 0.0028* 0.00093
    5 25.000 0.0001 0.00010
    6 0.001 0.0022* 0.00073
    *为根据土工试验指标利用式(6)计算的弱透水层释水率.
    下载: 导出CSV
  • [1] 张在明. 地下水与建筑地基工程[M]. 北京: 中国建筑工业出版社, 2001: 188-194.
    [2] 沈小克, 周宏磊, 王军辉, 等. 地下水与结构抗浮[M]. 北京: 中国建筑工业出版社, 2013: 15-37.
    [3] XU H S, WANG J H.Hydrogeological zoning of interactive sediment by multiple hydrometric nets with geological 3D technique[J].Site Investigation Science and Technology, 2014(1): 11-15. (in Chinese)
    [4] WANG J H, SHEN X K, TAO L J.Regional method to determine anti-buoyancy groundwater level in Beijing area[J]. Geotechnical Investigation & Surveying, 2015, 43(9): 43-50. (in Chinese)
    [5] 吴林高, 李国, 方兆祥等. 基坑工程降水案例[M]. 北京: 人民交通出版社, 2003: 39-46.
    [6] 姚天强, 石振华. 基坑降水手册[M]. 北京: 中国建筑工业出版社, 2006: 172-201.
    [7] 华人民共和国住房与城乡建设部. 建筑基坑支护技术规程: JGJ120—2012[S]. 北京: 中国建筑工业出版社, 2012: 101-102.
    [8] CASHMAN P M, PREENE M.Groundwater lowering in construction[M]. London: Spon Press, 2001: 444-445.
    [9] 北京市规划委员会, 北京市质量监督局. 城市建设工程地下水控制技术规范: DB11/1115—201 [S]. 北京: 中国建筑工业出版社, 2014: 54.
    [10] ZHANG Y, ZHAO Y Y.Real time prediction of land subsidence caused by foundation pit dewatering[J]. Rock and Soil Mechanics, 2008, 29(6): 1593-1596. (in Chinese)
    [11] ZHANG Y, XUE Y Q.Present sitution and prospect on the mathematical model of land subsidence due to pumping[J]. The Chinese Journal of Geological Hazard and Control, 2002, 13(2): 1-6, 24. (in Chinese)
    [12] CHEN C X, PEI S P.Research on groundwater exploitation-land subsidence model[J].Hydrogeology and Engineering Geology, 2001(2): 5-8. (in Chinese)
    [13] CHIANG W H, KINZELBACH W.3D-groundwater modeling with PMWIN: a simulation system for modeling groundwater flow and pollution[M]. New York, USA: Springer, 2001: 120-132.
    [14] YU X Z.Groundwater level numerical simulation prediction and its environmental influence evaluation after the south-to-north water transferring project[D]. Changchun: Jilin University, 2004: 69-73. (in Chinese)
    [15] ZHU X J.Research on prediction of land subsidence based on MODFLOW in Tianjin Ninghe county[J]. Geotechnical Engineering World, 2010, 1(6): 564-568. (in Chinese)
    [16] WANG J H, HAN X.Preliminary study on tertiary engineering geological conditions in beijing plain area[J]. Journal of Engineering Geology, 2013, (6): 682-686. (in Chinese)
    [17] LUO Z J, LI L, YAO T Q.Coupling model of three dimensional seepage and land-subsidence for dewatering of deep foundation pit in loose confined aquifers[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1947-1951. (in Chinese)
    [18] KAN J L, LUO L H.Application of processing modflow model in prediction of ground subsidence[J].Journal of Railway Engineering Society, 2010(2): 27-31. (in Chinese)
    [19] FU Y L, GUO Z F.Application of processing Modflow in groundwater seepage and ground settlement[J].Site Investigation Science and Technology, 2006(4): 19-23. (in Chinese)
    [20] CAO S W, YANG L, KONG T T.The finite element analysis of the effect of foundation pit dewatering on supporting structure and soil settlement[J]. Building Science, 2011, 27(9): 37-40. (in Chinese)
    [21] L L X.The ground and building settlement analysis caused by pit precipitation [D]. Jinan: Shandong Jianzhu University, 2012: 7-46. (in Chinese)
    [22] GONG X N, ZHANG J.Settlement of overlaying soil caused by decompression of confined water[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 145-149. (in Chinese)
    [23] WANG J X, WU L G, ZHU Y F, et al.Mechanism of dewatering-induced ground subsidence in deep subway station pit and calculation method[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 1010-1019. (in Chinese)
    [24] BEAR J. Hydraulics of Groundwater [M]. New York: Dover Publications, Inc, 2007: 89-94, 184-189.
    [25] 薛禹群, 吴吉春. 地下水动力学[M]. 3版. 北京: 地质出版社, 2010: 31-38, 108-113.
    [26] WANG F, CHOU W G, GAO X Q.Experimental research on determining method of clay water-resisting layer and water Pressure distribution regularity[J]. ROCK and SOIL Mechanics, 2006, 27(Suppl1): 189-192. (in Chinese)
    [27] RAN X L, XIA B.Calculation of specific storage by using the physical and mechanical properties of strata[J]. Earth Science Frontiers, 2003, 10(4): 636. (in Chinese)
    [28] RAN X L, CAO H D, XIA B, etc. Specific storage under Jacob assumptions and significance of its land subsidence mechanism[J]. Journal of Hydrodynamics, 2005, 20(3): 393-399. (in Chinese)
    [29] BURBEY T J, HELM D C.Modeling three-dimensional deformation in response to pumping of unconsolidated aquifers[J].Environmental and Engineering Geoscience, 1999(2): 199-212.
    [30] BURBEY T J.Stress-strain analyses for aquifer-system characterization[J]. Ground Water, 2001, 39(1): 128-136.
    [31] 中国地质调查局. 水文地质手册[M]. 北京: 地质出版社, 2012: 642-672, 682-683.
    [32] WANG J H, TAO L J, HAN X, et al.Analysis of area sink method for pit flow rate[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(Suppl1): 13-16. (in Chinese)
    [33] WANG J H, TAO L J, HAN X, etc. Efficient simulation for subsidence induced by dewatering of pit[C]//Selected Papers of the 4th International Conference on Civil, Architectural and Hydraulic Engineering. London: Taylor & Francis Group, 2016: 295-299.
    [34] XI T H.Analysis and discussion on settlement caused by subsurface excavation construction and dewatering at jinsong subway station of Beijing[J]. Construction Technology, 2015, 44(16): 104-107. (in Chinese)
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  31
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-17
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回