Properties of Foam Wave Absorbing Materials Prepared Based on Ferrite
-
摘要: 为了研究铁氧体的电磁性能以及铁氧体引入量的质量分数和样块厚度对材料性能的影响,以玻璃和陶瓷造粒料为基料,炭黑为发泡剂,引入铁氧体,经过球磨、烧结、发泡、退火工艺后制备出泡沫吸波材料. 结果表明:900℃处理对铁氧体的电磁性能无明显影响. 铁氧体引入量的质量分数为5%和10%的吸波性能优于铁氧体为15%和20%引入量的吸波性能;研究初步显示,该结果是由于铁氧体的引入影响多孔材料的泡孔结构. 铁氧体引入量的质量分数为10%时,材料的吸波性能随着样块厚度的增加而增大;样块厚度为50mm时,材料的有效吸收带宽(反射率小于-10dB)达18GHz,反射率低至-23.4dB.Abstract: To study the electromagnetic properties of the ferrite and the influences of the ferrite addition and the thickness of samples on the properties of the materials, foam wave absorbing materials were fabricated by introducing some ferrite and using glass and ceramic granulated material as base materials and carbon black as vesicant, with the processes of ball milling, sintering, foaming and annealing. The electromagnetic properties of ferrite had no significant change after the heat treatment at 900℃. The wave absorbing performance of materials with 5% and 10% ferrite were better than that of the materials with 15% and 20% ferrite contents, which was attributed to the fact that the incorporation of the ferrite influenced the porous structure of foam materials. Moreover, when content of ferrite was 10%, the wave absorption of the material increased with increasing samples’ thickness. The effective absorption bandwidth (reflectivity < -10dB) of 50mm thick material reached 18GHz, and its lowest reflectivity was -23.4dB.
-
Key words:
- foam material /
- wave absorbing properties /
- ferrite /
- electromagnetic properties
-
表 1 陶瓷造粒料的化学成分
Table 1. Chemical composition of the ceramic granulated materials%
成分 SiO2 Al2O3 K2O BaO SrO ZrO2 Co2O3 PbO Rb2O ZnO 质量分数 66.34 23.21 3.04 0.13 0.11 0.05 0.02 0.02 0.01 0.01 表 2 玻璃粉的化学成分
Table 2. Chemical composition of glass powder%
成分 SiO2 Na2O CaO MgO Al2O3 K2O SO3 Fe2O3 TiO2 ZrO2 质量分数 69.91 13.48 10.53 4.26 0.97 0.39 0.25 0.12 0.04 0.04 -
[1] 刘顺华, 刘军民, 董星龙. 电磁波屏蔽及吸波材料[M]. 北京: 化学工业出版, 2013: 239-286. [2] LI B P, WANG C G, WANG W.Progress of electromagnetic wave absorbing materials based on carbon[J]. Materials Review, 2012, 26(4): 9-14. (in Chinese) [3] LIANG L M, YU H F, WU Q L, et al.Investigation of microwave-absorbing properties of porous concrete[J]. Journal of Building Materials, 2010, 13(2): 165-168. (in Chinese) [4] MOGLIE F, MICHELI D, LAURENZI S, et al.Electromagnetic shielding performance of carbon foams[J].Carbon, 2012(50): 1972-1980. [5] CHEN Z P, XU C, MA C Q, et al.Lightweight and flexible grapheme foam composites for high-performance electromagnetic interference shielding[J].Advanced Materials, 2013(25): 1296-1300. [6] LIU X, XUE X X, DUAN P N.Effect of pore structure on microwave absorption of porous materials[J]. Journal of Materials and Metallurgy, 2007, 6(4): 306-310. (in Chinese) [7] ZHU X W, JIANG D L, TAN S H.Microwave absorption properties of silicon carbide mesh porous ceramics[J]. Journal of Inorganic Materials, 2002, 17(6): 1152-1156. (in Chinese) [8] XUE X X, LIU X, ZHANG Y.Electromagnetic wave absorption properties of aluminum foams-based porous metal composite[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(11): 1755-1759. (in Chinese) [9] CHOI W H, KIM C G.Broadband microwave-absorbing honeycomb structure with novel design concept[J].Composites: Part B, 2015(83): 14-20. [10] LI B Y, DUAN Y P, LIU S H.Study on microwave absorbing properties of absorbing plate based on hollow spherical shell structure[J]. Journal of Functional Materials, 2011, 42(9): 1731-1734. (in Chinese) [11] SOLTANI ALKUH M, FAMILI M H N, MOKHTARI MOTAMENI SHIRVAN M, et al. The relationship between electromagnetic absorption properties and cell structure of poly(methyl methacrylate)/multi-walled carbon nanotube composite foams[J].Materials and Design, 2016(100): 73-83. [12] JIA Z Y, WANG Q, TIAN Y L, et al.Study on microwave absorption properties of graphite foamed glass[J]. Functional Materials, 2004, 35: 829-832. (in Chinese) [13] LÜ D S.Design and microwave absorbing property of foam glass matrix composite[D]. Tianjin: Tianjin University, 2010: 1-11. (in Chinese) [14] CHEN K.Study on microwave absorption properties of metal reinforced foam glass matrix composite[D]. Tianjin: Tianjin University, 2011: 5-12. (in Chinese) [15] XU H M, ZHENG W, WANG X B, et al.Research status of radar absorbing material structure and new absorbent[J].Aerospace Materials & Technology, 2014(6): 1-4. (in Chinese) [16] PANG J F, MA X J, Xie X Y.Research progress of microwave absorption materials[J]. Electronic Components and Materials, 2015, 34(2): 7-12. (in Chinese) [17] JIA X W, ZHANG Y J, QIAN J S, et al.Study on wave absorbing property of graphite foam concrete[J]. Journal of Functional Materials, 2012, 43(17): 2397-2400. (in Chinese) [18] JI K J, ZHAO H H, ZHANG J, et al.Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu-Ni alloy integrated with CNTs[J]. Applied Surface Science, 2014, 311: 351-356. [19] SHEN B, LI Y, YI D, et al.Microcellular graphene foam for improved broadband electromagnetic interference shielding[J]. Carbon, 2016, 102: 154-160.