留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于铁氧体制备的泡沫吸波材料性能

孙诗兵 黄石明 高乔 田英良 杜涛

孙诗兵, 黄石明, 高乔, 田英良, 杜涛. 基于铁氧体制备的泡沫吸波材料性能[J]. 机械工程学报, 2017, 43(2): 299-305. doi: 10.11936/bjutxb2016080032
引用本文: 孙诗兵, 黄石明, 高乔, 田英良, 杜涛. 基于铁氧体制备的泡沫吸波材料性能[J]. 机械工程学报, 2017, 43(2): 299-305. doi: 10.11936/bjutxb2016080032
SUN Shibing, HUANG Shiming, GAO Qiao, TIAN Yingliang, DU Tao. Properties of Foam Wave Absorbing Materials Prepared Based on Ferrite[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 299-305. doi: 10.11936/bjutxb2016080032
Citation: SUN Shibing, HUANG Shiming, GAO Qiao, TIAN Yingliang, DU Tao. Properties of Foam Wave Absorbing Materials Prepared Based on Ferrite[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 299-305. doi: 10.11936/bjutxb2016080032

基于铁氧体制备的泡沫吸波材料性能

doi: 10.11936/bjutxb2016080032
基金项目: 国家科技支撑计划资助项目(2014BA15B02)
详细信息
    作者简介:

    作者简介: 孙诗兵(1963—), 男, 高级工程师, 主要从事外墙外保温材料、建筑围护结构材料、电磁屏蔽材料方面的研究, E-mail:sunshibing@bjut.edu.cn

  • 中图分类号: TB34

Properties of Foam Wave Absorbing Materials Prepared Based on Ferrite

  • 摘要: 为了研究铁氧体的电磁性能以及铁氧体引入量的质量分数和样块厚度对材料性能的影响,以玻璃和陶瓷造粒料为基料,炭黑为发泡剂,引入铁氧体,经过球磨、烧结、发泡、退火工艺后制备出泡沫吸波材料. 结果表明:900℃处理对铁氧体的电磁性能无明显影响. 铁氧体引入量的质量分数为5%和10%的吸波性能优于铁氧体为15%和20%引入量的吸波性能;研究初步显示,该结果是由于铁氧体的引入影响多孔材料的泡孔结构. 铁氧体引入量的质量分数为10%时,材料的吸波性能随着样块厚度的增加而增大;样块厚度为50mm时,材料的有效吸收带宽(反射率小于-10dB)达18GHz,反射率低至-23.4dB.

     

  • 图  泡沫吸波材料制备工艺流程

    Figure  1.  Preparation process of porous materials of wave absorption

    图  室温下铁氧体的电磁参数与频率的关系

    Figure  2.  Relations between ferrite electromagnetic parameters and frequency at room temperature

    图  高温处理后铁氧体的电磁性能

    Figure  3.  Electromagnetic properties of ferrite after high temperature treatment

    图  铁氧体引入量的质量分数对电磁波反射率的影响

    Figure  4.  Effect of ferrite contents on the wave absorption properties

    图  不同铁氧体引入量的质量分数的材料泡孔状态

    Figure  5.  Material cell state of different ferrite contents

    图  炭黑的介电损耗角正切和磁损耗角正切

    Figure  6.  Loss tangent of dielectric and magnetic of carbon black

    图  试件厚度与材料电磁波反射率的关系

    Figure  7.  Relations between samples thickness and reflectivity of electromagnetic wave

    图  铁氧体引入量的质量分数对力学强度的影响

    Figure  8.  Effect of the ferrite contents on materials mechanical strength

    图  铁氧体引入量的质量分数对密度的影响

    Figure  9.  Effect of the ferrite contents on density of material

    表  1  陶瓷造粒料的化学成分

    Table  1.   Chemical composition of the ceramic granulated materials%

    成分 SiO2 Al2O3 K2O BaO SrO ZrO2 Co2O3 PbO Rb2O ZnO
    质量分数 66.34 23.21 3.04 0.13 0.11 0.05 0.02 0.02 0.01 0.01
    下载: 导出CSV

    表  2  玻璃粉的化学成分

    Table  2.   Chemical composition of glass powder%

    成分 SiO2 Na2O CaO MgO Al2O3 K2O SO3 Fe2O3 TiO2 ZrO2
    质量分数 69.91 13.48 10.53 4.26 0.97 0.39 0.25 0.12 0.04 0.04
    下载: 导出CSV
  • [1] 刘顺华, 刘军民, 董星龙. 电磁波屏蔽及吸波材料[M]. 北京: 化学工业出版, 2013: 239-286.
    [2] LI B P, WANG C G, WANG W.Progress of electromagnetic wave absorbing materials based on carbon[J]. Materials Review, 2012, 26(4): 9-14. (in Chinese)
    [3] LIANG L M, YU H F, WU Q L, et al.Investigation of microwave-absorbing properties of porous concrete[J]. Journal of Building Materials, 2010, 13(2): 165-168. (in Chinese)
    [4] MOGLIE F, MICHELI D, LAURENZI S, et al.Electromagnetic shielding performance of carbon foams[J].Carbon, 2012(50): 1972-1980.
    [5] CHEN Z P, XU C, MA C Q, et al.Lightweight and flexible grapheme foam composites for high-performance electromagnetic interference shielding[J].Advanced Materials, 2013(25): 1296-1300.
    [6] LIU X, XUE X X, DUAN P N.Effect of pore structure on microwave absorption of porous materials[J]. Journal of Materials and Metallurgy, 2007, 6(4): 306-310. (in Chinese)
    [7] ZHU X W, JIANG D L, TAN S H.Microwave absorption properties of silicon carbide mesh porous ceramics[J]. Journal of Inorganic Materials, 2002, 17(6): 1152-1156. (in Chinese)
    [8] XUE X X, LIU X, ZHANG Y.Electromagnetic wave absorption properties of aluminum foams-based porous metal composite[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(11): 1755-1759. (in Chinese)
    [9] CHOI W H, KIM C G.Broadband microwave-absorbing honeycomb structure with novel design concept[J].Composites: Part B, 2015(83): 14-20.
    [10] LI B Y, DUAN Y P, LIU S H.Study on microwave absorbing properties of absorbing plate based on hollow spherical shell structure[J]. Journal of Functional Materials, 2011, 42(9): 1731-1734. (in Chinese)
    [11] SOLTANI ALKUH M, FAMILI M H N, MOKHTARI MOTAMENI SHIRVAN M, et al. The relationship between electromagnetic absorption properties and cell structure of poly(methyl methacrylate)/multi-walled carbon nanotube composite foams[J].Materials and Design, 2016(100): 73-83.
    [12] JIA Z Y, WANG Q, TIAN Y L, et al.Study on microwave absorption properties of graphite foamed glass[J]. Functional Materials, 2004, 35: 829-832. (in Chinese)
    [13] LÜ D S.Design and microwave absorbing property of foam glass matrix composite[D]. Tianjin: Tianjin University, 2010: 1-11. (in Chinese)
    [14] CHEN K.Study on microwave absorption properties of metal reinforced foam glass matrix composite[D]. Tianjin: Tianjin University, 2011: 5-12. (in Chinese)
    [15] XU H M, ZHENG W, WANG X B, et al.Research status of radar absorbing material structure and new absorbent[J].Aerospace Materials & Technology, 2014(6): 1-4. (in Chinese)
    [16] PANG J F, MA X J, Xie X Y.Research progress of microwave absorption materials[J]. Electronic Components and Materials, 2015, 34(2): 7-12. (in Chinese)
    [17] JIA X W, ZHANG Y J, QIAN J S, et al.Study on wave absorbing property of graphite foam concrete[J]. Journal of Functional Materials, 2012, 43(17): 2397-2400. (in Chinese)
    [18] JI K J, ZHAO H H, ZHANG J, et al.Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu-Ni alloy integrated with CNTs[J]. Applied Surface Science, 2014, 311: 351-356.
    [19] SHEN B, LI Y, YI D, et al.Microcellular graphene foam for improved broadband electromagnetic interference shielding[J]. Carbon, 2016, 102: 154-160.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  25
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-13
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回