Detecting Functional Module Method Based on Cultural Algorithm in Protein-protein Interaction Networks
-
摘要: 为了解决蛋白质相互作用(protein-protein interaction,PPI)网络功能模块检测问题,提出一种基于文化算法的PPI网络功能模块检测(CA-FMD)方法. 首先,每个个体采用基于节点邻居有序表的编码方式表示功能模块检测问题的一个可行解. 然后,利用文化算法的双层进化机制获得最优解,其中,上层机制用来模拟信念空间中群体经验的进化,下层机制用来刻画种群空间中个体的进化. 最后,借助2个空间的相互作用和影响完成解的优化. 在3个数据集上的实验结果表明:与其他算法相比,CA-FMD方法在多项评价指标上都具有明显的优势.Abstract: To achieve function module detection in protein-protein interaction (PPI) networks, a PPI network functional module detection method based on cultural algorithm (CA-FMD) was proposed. First, an ordered adjacency list encoding scheme was used to model an individual in the population space. Then, the evolutionary mechanism of cultural algorithm was designed and employed to obtain the optimal solution, where the upper mechanism simulated the evolution of the group experience in the belief space, and the lower mechanism described the evolution of individuals in the population space. Finally, the optimation of solutions was completed by the interaction and influence of the two spaces. Experimental results on three datasets show that the CA-FMD method has obvious advantages in some evaluation metrics compared with other algorithms.
-
表 1 6种算法在Gavin数据集上的实验结果
Table 1. Experimental results of six algorithms in Gavin data sets
算法 模块数 模块平均大小 Ncp≥0.2 Ncb≥0.2 CA-FMD 157 9.11 97 169 CFinder 98 11.47 54 89 Jerarca 264 5.42 101 172 COACH 326 2.35 123 197 MCL 449 3.19 188 224 MCODE 66 9.12 49 85 表 2 6种算法在DIPcore数据集上的实验结果
Table 2. Experimental results of six algorithms in DIPcore data sets
算法 模块数 模块平均大小 Ncp≥0.2 Ncb≥0.2 CA-FMD 360 6.96 155 234 CFinder 169 6.94 94 148 Jerarca 578 4.34 150 230 COACH 382 2.89 136 155 MCL 1032 2.43 280 279 MCODE 85 6.15 54 95 表 3 6种算法在MIPS数据集上的实验结果
Table 3. Experimental results of six algorithms in MIPS data sets
算法 模块数 模块平均大小 Ncp≥0.2 Ncb≥0.2 CA-FMD 461 9.86 112 161 CFinder 178 7.79 55 86 Jerarca 1221 3.72 124 158 COACH 489 2.61 90 102 MCL 1774 2.56 258 250 MCODE 63 8.33 25 46 -
[1] AKOADJEI D, FU W, WALLIN C, et al.HIV-1, human interaction database: current status and new features[J]. Nucleic Acids Research, 2014, 43(D1): 566-570. [2] JI J Z, ZHANG A D, LIU C N, et al.Survey: functional module detection from protein-protein interaction networks[J]. IEEE Transactions on Knowledge & Data Engineering, 2014, 26(2): 261-277. [3] JI J Z, LIU Z J, LIU H X, et al.An overview of research on functional module detection for protein-protein interaction networks[J]. Acta Automatica Sinica, 2014, 40(4): 577-593. (in Chinese) [4] RAVAEE H, MASOUDI-NEJAD A, OMIDI S, et al.Improved immune genetic algorithm for clustering protein-protein interaction network[C]//IEEE International Conference on Bioinformatics and Bioengineering. Washington, DC: IEEE Computer Society, 2010: 174-179. [5] LEI X J, TIAN J F.The Information flow clustering model and algorithm based on the artificial bee colony mechanism of PPI networks[J]. Chinese Journal of Computers, 2012, 35(1): 134-145. (in Chinese) [6] JI J Z, LIU Z J, ZHANG A D, et al.ZHAM-FMD: mining functional modules in protein-protein interaction networks using ant colony optimization and multi-agent evolution[J]. Neurocomputing, 2013, 121(18): 453-469. [7] JI J Z, JIAO L, YANG C C, et al.MAE-FMD: multi agent evolutionary method for functional module detection in protein-protein interaction networks[J]. BMC Bioinformatics, 2014, 15(1): 325. [8] JI J Z, LÜ J W, YANG C C, et al.Detecting functional modules based on a multiple-grain model in large-scale protein-protein interaction networks[J]. IEEE/ACM Transactions on Computational Biology & Bioinformatics, 2016, 13(4): 610-622. [9] REYNOLDS R G.An introduction to cultural algorithms[C]∥Proceedings of the 3rd Annual Conference on Evolutionary Programming. Singapore: World Scientific Publishing, 1994: 131-136. [10] MCDONNELL J, REYNOLDS R, FOGEL D.Using cultural algorithms for constraint handling in GENOCOP[M]∥Evolutionary Programming Ⅳ: Proceedings of the Fourth Annual Conference on Evolutionary Programming. San Piego, CA: MIT Press, 1995: 289-305. [11] HUANG H Y, GU X S, LIU M D.Research on cultural algorithm for solving nonlinear constrained optimization[J]. Acta Automatica Sinica, 2007, 33(10): 1115-1120. (in Chinese) [12] GUO Y N, LIU D D, CHENG J, et al.Adaptive cultural algorithm adopting mixed mutation[J]. Acta Electronica Sinica, 2011, 39(8): 1913-1918. (in Chinese) [13] LI M, LU F B, CHEN H.Adaptive cultural algorithm adopting mixed mutation[J]. Acta Electronica Sinica, 2015, 43(5): 888-894. (in Chinese) [14] SOZA C, BECERRA R L, RIFF M C, et al.Solving timetabling problems using a cultural algorithm[J]. Applied Soft Computing, 2011, 11(1): 337-344. [15] RIVERA D C, RICARDO L B, CARLOS A, et al.Cultural algorithms, an alternative heuristic to solve the job shop scheduling problem[J]. Engineering Optimization, 2007, 39(1): 69-85. [16] SRINIVASAN S, RAMAKRISHNAM S.A social intelligent system for multi-objective optimization of classification rules using cultural algorithms[J]. Computing, 2013, 95(4): 327-350. [17] HALDAR V, CHAKRABORTY N.Power loss minimization by optimal capacitor placement in radial distribution system using modified cultural algorithm[J]. International Transactions on Electrical Energy Systems, 2013, 25(1): 54-71. [18] ALI M Z, AWAD N H.A novel class of niche hybrid cultural algorithms for continuous engineering optimization[J]. Information Sciences An International Journal, 2014, 267(2): 158-190. [19] ALI M Z, AWAD N H, SUGANTHAN P N, et al. A novel hybrid cultural algorithms framework with trajectory-based search for global numerical optimization[J]. Information Sciences, 2016, 334/335: 219-249. [20] FRIEDEL C C, KRUMSEK J, ZIMMER R.Bootstrapping the interactome: unsupervised identification of protein complexes in yeast[J]. Journal of Computational Biology, 2009, 16(8): 971-987. [21] LI X, WU M, KWOH C K, et al.Computational approaches for detecting protein complexes from protein interaction networks: a survey[J]. BMC Genomics, 2010, 11(Suppl 1): 1-19. [22] BROHEE S, VAN H J.Evaluation of clustering algorithms for protein-protein interaction networks[J]. BMC Bioinformatics, 2006, 7(1): 2791-2797. [23] ADAMCSEK B, PALLA G, FARKAS I J, et al.CFinder: locating cliques and overlapping modules in biological networks[J]. Bioinformatics, 2006, 22(8): 1021-1023. [24] ALDECOA R.Jerarca: efficient analysis of complex networks using hierarchical clustering[J]. Plos One, 2010, 5(7): e11585. [25] MIN W, LI X, KWOH C K, et al.A core-attachment based method to detect protein complexes in PPI networks[J]. BMC Bioinformatics, 2009, 10(11): 169. [26] VAN D S.A cluster algorithm for graphs: INS-R0010[R]. Amsterdam: CWI, 2000: 1-40. [27] BADER G D, HOGUE C W.An automated method for finding molecular complexes in large protein interaction networks[J]. BMC Bioinformatics, 2003, 4(1): 1-27.