留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于文化算法的PPI网络功能模块检测方法

冀俊忠 高光轩

冀俊忠, 高光轩. 基于文化算法的PPI网络功能模块检测方法[J]. 机械工程学报, 2017, 43(1): 13-21. doi: 10.11936/bjutxb2016100034
引用本文: 冀俊忠, 高光轩. 基于文化算法的PPI网络功能模块检测方法[J]. 机械工程学报, 2017, 43(1): 13-21. doi: 10.11936/bjutxb2016100034
JI Junzhong, GAO Guangxuan. Detecting Functional Module Method Based on Cultural Algorithm in Protein-protein Interaction Networks[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 13-21. doi: 10.11936/bjutxb2016100034
Citation: JI Junzhong, GAO Guangxuan. Detecting Functional Module Method Based on Cultural Algorithm in Protein-protein Interaction Networks[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 13-21. doi: 10.11936/bjutxb2016100034

基于文化算法的PPI网络功能模块检测方法

doi: 10.11936/bjutxb2016100034
基金项目: 国家自然科学基金资助项目(61375059)
详细信息
    作者简介:

    作者简介: 冀俊忠(1969—), 男, 教授, 主要从事机器学习、 人工智能方面的研究, E-mail:jjz01@bjut.edu.cn

  • 中图分类号: Q811.4;TP301.6

Detecting Functional Module Method Based on Cultural Algorithm in Protein-protein Interaction Networks

  • 摘要: 为了解决蛋白质相互作用(protein-protein interaction,PPI)网络功能模块检测问题,提出一种基于文化算法的PPI网络功能模块检测(CA-FMD)方法. 首先,每个个体采用基于节点邻居有序表的编码方式表示功能模块检测问题的一个可行解. 然后,利用文化算法的双层进化机制获得最优解,其中,上层机制用来模拟信念空间中群体经验的进化,下层机制用来刻画种群空间中个体的进化. 最后,借助2个空间的相互作用和影响完成解的优化. 在3个数据集上的实验结果表明:与其他算法相比,CA-FMD方法在多项评价指标上都具有明显的优势.

     

  • 图  文化算法框架

    Figure  1.  Cultural algorithm framework

    图  PPI网络

    Figure  2.  PPI networks

    图  邻居有序表

    Figure  3.  Ordered adjacency list

    图  个体的编码

    Figure  4.  Encoding of an individual

    图  解码结果

    Figure  5.  Decoding results

    图  样本库示例

    Figure  6.  Sample library examples

    图  6种算法在Gavin数据集上的结果比较

    Figure  7.  Comparative result of six algorithms for Gavin data

    图  6种算法在DIPcore数据集上的结果比较

    Figure  8.  Comparative result of six algorithms for DIPcore data

    图  6种算法在MIPS数据集上的结果比较

    Figure  9.  Comparative result of six algorithms for MIPS data

    表  1  6种算法在Gavin数据集上的实验结果

    Table  1.   Experimental results of six algorithms in Gavin data sets

    算法 模块数 模块平均大小 Ncp≥0.2 Ncb≥0.2
    CA-FMD 157 9.11 97 169
    CFinder 98 11.47 54 89
    Jerarca 264 5.42 101 172
    COACH 326 2.35 123 197
    MCL 449 3.19 188 224
    MCODE 66 9.12 49 85
    下载: 导出CSV

    表  2  6种算法在DIPcore数据集上的实验结果

    Table  2.   Experimental results of six algorithms in DIPcore data sets

    算法 模块数 模块平均大小 Ncp≥0.2 Ncb≥0.2
    CA-FMD 360 6.96 155 234
    CFinder 169 6.94 94 148
    Jerarca 578 4.34 150 230
    COACH 382 2.89 136 155
    MCL 1032 2.43 280 279
    MCODE 85 6.15 54 95
    下载: 导出CSV

    表  3  6种算法在MIPS数据集上的实验结果

    Table  3.   Experimental results of six algorithms in MIPS data sets

    算法 模块数 模块平均大小 Ncp≥0.2 Ncb≥0.2
    CA-FMD 461 9.86 112 161
    CFinder 178 7.79 55 86
    Jerarca 1221 3.72 124 158
    COACH 489 2.61 90 102
    MCL 1774 2.56 258 250
    MCODE 63 8.33 25 46
    下载: 导出CSV
  • [1] AKOADJEI D, FU W, WALLIN C, et al.HIV-1, human interaction database: current status and new features[J]. Nucleic Acids Research, 2014, 43(D1): 566-570.
    [2] JI J Z, ZHANG A D, LIU C N, et al.Survey: functional module detection from protein-protein interaction networks[J]. IEEE Transactions on Knowledge & Data Engineering, 2014, 26(2): 261-277.
    [3] JI J Z, LIU Z J, LIU H X, et al.An overview of research on functional module detection for protein-protein interaction networks[J]. Acta Automatica Sinica, 2014, 40(4): 577-593. (in Chinese)
    [4] RAVAEE H, MASOUDI-NEJAD A, OMIDI S, et al.Improved immune genetic algorithm for clustering protein-protein interaction network[C]//IEEE International Conference on Bioinformatics and Bioengineering. Washington, DC: IEEE Computer Society, 2010: 174-179.
    [5] LEI X J, TIAN J F.The Information flow clustering model and algorithm based on the artificial bee colony mechanism of PPI networks[J]. Chinese Journal of Computers, 2012, 35(1): 134-145. (in Chinese)
    [6] JI J Z, LIU Z J, ZHANG A D, et al.ZHAM-FMD: mining functional modules in protein-protein interaction networks using ant colony optimization and multi-agent evolution[J]. Neurocomputing, 2013, 121(18): 453-469.
    [7] JI J Z, JIAO L, YANG C C, et al.MAE-FMD: multi agent evolutionary method for functional module detection in protein-protein interaction networks[J]. BMC Bioinformatics, 2014, 15(1): 325.
    [8] JI J Z, LÜ J W, YANG C C, et al.Detecting functional modules based on a multiple-grain model in large-scale protein-protein interaction networks[J]. IEEE/ACM Transactions on Computational Biology & Bioinformatics, 2016, 13(4): 610-622.
    [9] REYNOLDS R G.An introduction to cultural algorithms[C]∥Proceedings of the 3rd Annual Conference on Evolutionary Programming. Singapore: World Scientific Publishing, 1994: 131-136.
    [10] MCDONNELL J, REYNOLDS R, FOGEL D.Using cultural algorithms for constraint handling in GENOCOP[M]∥Evolutionary Programming Ⅳ: Proceedings of the Fourth Annual Conference on Evolutionary Programming. San Piego, CA: MIT Press, 1995: 289-305.
    [11] HUANG H Y, GU X S, LIU M D.Research on cultural algorithm for solving nonlinear constrained optimization[J]. Acta Automatica Sinica, 2007, 33(10): 1115-1120. (in Chinese)
    [12] GUO Y N, LIU D D, CHENG J, et al.Adaptive cultural algorithm adopting mixed mutation[J]. Acta Electronica Sinica, 2011, 39(8): 1913-1918. (in Chinese)
    [13] LI M, LU F B, CHEN H.Adaptive cultural algorithm adopting mixed mutation[J]. Acta Electronica Sinica, 2015, 43(5): 888-894. (in Chinese)
    [14] SOZA C, BECERRA R L, RIFF M C, et al.Solving timetabling problems using a cultural algorithm[J]. Applied Soft Computing, 2011, 11(1): 337-344.
    [15] RIVERA D C, RICARDO L B, CARLOS A, et al.Cultural algorithms, an alternative heuristic to solve the job shop scheduling problem[J]. Engineering Optimization, 2007, 39(1): 69-85.
    [16] SRINIVASAN S, RAMAKRISHNAM S.A social intelligent system for multi-objective optimization of classification rules using cultural algorithms[J]. Computing, 2013, 95(4): 327-350.
    [17] HALDAR V, CHAKRABORTY N.Power loss minimization by optimal capacitor placement in radial distribution system using modified cultural algorithm[J]. International Transactions on Electrical Energy Systems, 2013, 25(1): 54-71.
    [18] ALI M Z, AWAD N H.A novel class of niche hybrid cultural algorithms for continuous engineering optimization[J]. Information Sciences An International Journal, 2014, 267(2): 158-190.
    [19] ALI M Z, AWAD N H, SUGANTHAN P N, et al. A novel hybrid cultural algorithms framework with trajectory-based search for global numerical optimization[J]. Information Sciences, 2016, 334/335: 219-249.
    [20] FRIEDEL C C, KRUMSEK J, ZIMMER R.Bootstrapping the interactome: unsupervised identification of protein complexes in yeast[J]. Journal of Computational Biology, 2009, 16(8): 971-987.
    [21] LI X, WU M, KWOH C K, et al.Computational approaches for detecting protein complexes from protein interaction networks: a survey[J]. BMC Genomics, 2010, 11(Suppl 1): 1-19.
    [22] BROHEE S, VAN H J.Evaluation of clustering algorithms for protein-protein interaction networks[J]. BMC Bioinformatics, 2006, 7(1): 2791-2797.
    [23] ADAMCSEK B, PALLA G, FARKAS I J, et al.CFinder: locating cliques and overlapping modules in biological networks[J]. Bioinformatics, 2006, 22(8): 1021-1023.
    [24] ALDECOA R.Jerarca: efficient analysis of complex networks using hierarchical clustering[J]. Plos One, 2010, 5(7): e11585.
    [25] MIN W, LI X, KWOH C K, et al.A core-attachment based method to detect protein complexes in PPI networks[J]. BMC Bioinformatics, 2009, 10(11): 169.
    [26] VAN D S.A cluster algorithm for graphs: INS-R0010[R]. Amsterdam: CWI, 2000: 1-40.
    [27] BADER G D, HOGUE C W.An automated method for finding molecular complexes in large protein interaction networks[J]. BMC Bioinformatics, 2003, 4(1): 1-27.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  64
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-14
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2017-01-01

目录

    /

    返回文章
    返回