RGB-D object recognition algorithm based on improved double stream convolution recursive neural network
-
摘要: 为了提高基于图像的物体识别准确率,提出一种改进双流卷积递归神经网络的RGB-D物体识别算法(Re-CRNN)。将RGB图像与深度光学信息结合,基于残差学习对双流卷积神经网络(CNN)进行改进:增加顶层特征融合单元,在RGB图像和深度图像中学习联合特征,将提取的RGB和深度图像的高层次特征进行跨通道信息融合,继而使用Softmax生成概率分布。最后,使用标准数据集进行实验,结果表明,Re-CRNN算法的RGB-D物体识别准确率为94.1%,较现有基于图像的物体识别方法有显著的提升。Abstract: An algorithm (Re-CRNN) of image processing is proposed using RGB-D object recognition, which is improved based on a double stream convolutional recursive neural network, in order to improve the accuracy of object recognition. Re-CRNN combines RGB image with depth optical information, the double stream convolutional neural network (CNN) is improved based on the idea of residual learning as follows: top-level feature fusion unit is added into the network, the representation of federation feature is learning in RGB images and depth images and the high-level features are integrated in across channels of the extracted RGB images and depth images information, after that, the probability distribution was generated by Softmax. Finally, the experiment was carried out on the standard RGB-D data set. The experimental results show that the accuracy was 94.1% using Re-CRNN algorithm for the RGB-D object recognition, which was significantly improved compared with the existing image-based object recognition methods.
-
Key words:
- RGB-D image /
- structured light /
- object recognition /
- deep learning /
- depth image
-
表 1 特征融合方式对比
Table 1. Comparison of feature fusion methods
Method Category accuracy/% Instance accuracy/% Fc-RGB-D+Softmax 93.2 96.8 Fu-RGB-D+Softmax 93.3 97.1 Re-CRNN 94.1 98.5 表 2 与其他方法对比
Table 2. Compared with other methods
Method Category accuracy/% Instance accuracy/% RGB Depth RGB-D RGB Depth RGB-D Bo et al[3] 82.4±3.1 81.2±2.3 87.5±2.9 92.1 51.7 92.8 CNN-RNN[7] 82.9±4.6 60.4±5.6 86.8±3.3 - - - HCAE-ELM[8] 84.3±3.2 82.9±2.1 90.2±1.5 - - - CNN-features[19] 83.1±2.0 - 89.4±1.3 92.0 45.5 94.1 Fus-CNN[9] 84.1±2.7 83.8±2.7 91.3±1.4 - - - MM-LRF-ELM[11] 84.3±3.2 82.9±2.5 89.6±2.5 91.0 50.9 92.5 Andreas et al[10] 89.5±1.9 84.5±2.9 93.5±1.1 - - - STEM-CaRFs[12] 88.8±2.0 80.8±2.1 92.2±1.3 97.0 56.3 97.6 Re-CRNN 90.3±1.8 84.3±2.2 94.1±0.9 97.5 58.7 98.5 -
[1] Lai K, Bo L F, Ren X F, et al. A large-scale hierarchical multi-view RGB-D object dataset[C]//Proceedings of 2011 IEEE International Conference on Robotics and Automation, 2011: 1817-1824. [2] Paulk D, Metsis V, McMurrough C, et al. A supervised learning approach for fast object recognition from RGB-D data[C]//Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments, 2014: 5. [3] Bo L F, Ren X F, Fox D. Depth kernel descriptors for object recognition[C]//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011: 821-826. [4] Blum M, Springenberg J T, Wülfing J, et al. A learned feature descriptor for object recognition in RGB-D data[C]//Proceedings of 2012 IEEE International Conference on Robotics and Automation, 2012: 1298-1303. [5] 向程谕. RGB-D图像的特征提取与分类方法研究[D]. 湘潭: 湘潭大学, 2017: 28-31.Xiang C Y. Research on feature extraction and classification method of RGB-D images[D]. Xiangtan: Xiangtan University, 2017: 28-31. [6] 李珣, 李林鹏, 南恺恺, 等. 智能家居移动机器人的人脸识别方法[J]. 西安工程大学学报, 2020, 34(1): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFZ202001010.htmLi X, Li L P, Nan K K, et al. Face recognition method of smart home mobile robot[J]. J Xi'an Poly Univ, 2020, 34(1): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFZ202001010.htm [7] Socher R, Huval B, Bhat B, et al. Convolutional-recursive deep learning for 3D object classification[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012: 665-673. [8] 殷云华, 李会方. 基于混合卷积自编码极限学习机的RGB-D物体识别[J]. 红外与激光工程, 2018, 47(2): 0203008. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201802009.htmYin Y H, Li H F. RGB-D object recognition based on hybrid convolutional auto-encoder extreme learning machine[J]. Infrared Laser Eng, 2018, 47(2): 0203008. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201802009.htm [9] Eitel A, Springenberg J T, Spinello L, et al. Multimodal deep learning for robust RGB-D object recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: 681-687. [10] Aakerberg A, Nasrollahi K, Rasmussen C B, et al. Depth value pre-processing for accurate transfer learning based RGB-D object recognition[C]//Proceedings of the International Joint Conference on Computational Intelligence, 2017: 121-128. [11] Liu H P, Li F X, Xu X Y, et al. Multi-modal local receptive field extreme learning machine for object recognition[J]. Neurocomputing, 2018, 277: 4-11. doi: 10.1016/j.neucom.2017.04.077 [12] Asif U, Bennamoun M, Sohel F A. RGB-D object recognition and grasp detection using hierarchical cascaded forests[J]. IEEE Trans Robot, 2017, 33(3): 547-564. doi: 10.1109/TRO.2016.2638453 [13] 李梁华, 王永雄. 高效3D密集残差网络及其在人体行为识别中的应用[J]. 光电工程, 2020, 47(2): 190139. doi: 10.12086/oee.2020.190139Li L H, Wang Y X. Efficient 3D dense residual network and its application in human action recognition[J]. Opto-Electron Eng, 2020, 47(2): 190139. doi: 10.12086/oee.2020.190139 [14] Cheng Y H, Cai R, Zhao X, et al. Convolutional fisher kernels for RGB-D object recognition[C]//Proceedings of 2015 International Conference on 3D Vision, 2015: 135-143. [15] Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9. [16] Li X, Zhao Z F, Liu L, et al. An optimization model of multi-intersection signal control for trunk road under collaborative information[J]. J Control Sci Eng, 2017, 2017: 2846987. http://www.researchgate.net/publication/317158890_An_Optimization_Model_of_Multi-Intersection_Signal_Control_for_Trunk_Road_under_Collaborative_Information [17] 沈明玉, 俞鹏飞, 汪荣贵, 等. 多路径递归网络结构的单帧图像超分辨率重建[J]. 光电工程, 2019, 46(11): 180489. doi: 10.12086/oee.2019.180489Shen M Y, Yu P F, Wang R G, et al. Image superresolution via multipath recursive convolutional network[J]. Opto-Electron Eng, 2019, 46(11): 180489. doi: 10.12086/oee.2019.180489 [18] Ren X F, Bo L F, Fox D. RGB-(D) scene labeling: features and algorithms[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012: 2759-2766. [19] Schwarz M, Schulz H, Behnke S. RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features[C]//Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015: 1329-1335. [20] 向程谕, 王冬丽, 周彦, 等. 基于RGB-D融合特征的图像分类[J]. 计算机工程与应用, 2018, 54(8): 178-182, 254. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201808029.htmXiang C Y, Wang D L, Zhou Y, et al. Image classification based on RGB-D fusion feature[J]. Comput Eng Appl, 2018, 54(8): 178-182, 254. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201808029.htm