留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单样本学习的多特征人体姿态模型识别研究

李国友 李晨光 王维江 杨梦琪 杭丙鹏

李国友, 李晨光, 王维江, 杨梦琪, 杭丙鹏. 基于单样本学习的多特征人体姿态模型识别研究[J]. 机械工程学报, 2021, 48(2): 200099. doi: 10.12086/oee.2021.200099
引用本文: 李国友, 李晨光, 王维江, 杨梦琪, 杭丙鹏. 基于单样本学习的多特征人体姿态模型识别研究[J]. 机械工程学报, 2021, 48(2): 200099. doi: 10.12086/oee.2021.200099
Li Guoyou, Li Chenguang, Wang Weijiang, Yang Mengqi, Hang Bingpeng. Research on multi-feature human pose model recognition based on one-shot learning[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200099. doi: 10.12086/oee.2021.200099
Citation: Li Guoyou, Li Chenguang, Wang Weijiang, Yang Mengqi, Hang Bingpeng. Research on multi-feature human pose model recognition based on one-shot learning[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200099. doi: 10.12086/oee.2021.200099

基于单样本学习的多特征人体姿态模型识别研究

doi: 10.12086/oee.2021.200099
基金项目: 

河北省高等学校科学技术研究青年基金项目 2011139

河北省自然科学基金项目 F2012203111

详细信息
    作者简介:

    李国友(1972-),男,博士,教授,主要从事机器视觉和图像处理算法的设计与研究。E-mail:lgyysu@163.com

    通讯作者:

    李晨光(1994-),男,硕士研究生,主要从事图像处理与模式识别的研究。E-mail:1498578260@qq.com

  • 中图分类号: TP391.4; TP181

Research on multi-feature human pose model recognition based on one-shot learning

Funds: 

Youth Fund for Science and Technology Research in Colleges and Universities of Hebei Province 2011139

Natural Science Foundation of Hebei Province F2012203111

More Information
  • 摘要: 随着人机交互、虚拟现实等相关领域的发展,人体姿态识别已经成为热门研究课题。由于人体属于非刚性模型,具有时变性的特点,导致识别的准确性和鲁棒性不理想。本文基于KinectV2体感摄像头采集的骨骼信息,结合人体角度和距离特征,提出了一种基于单样本学习的模型匹配方法。首先,通过对采集的骨骼信息进行特征提取,计算关节点向量夹角和关节点的位移并设定阈值,其次待测姿态与模板姿态进行匹配计算,满足阈值限定范围则识别成功。实验结果表明,该方法能够实时的检测和识别阈值限定范围内定义的人体姿态,提高了识别的准确性和鲁棒性。

     

  • 图  人体骨骼关节点示意图

    Figure  1.  Schematic diagram of human bone joints

    图  动作类型示意图

    Figure  2.  Schematic diagram of action types

    图  人体姿态识别流程图

    Figure  3.  Flow chart of gesture recognition

    图  关节向量角示意图

    Figure  4.  Schematic diagram of joint vector angle

    图  左上肢向量角

    Figure  5.  Vector angle of left upper limb

    图  距离特征示意图

    Figure  6.  Schematic diagram of distance characteris

    图  单样本学习模型结构

    Figure  7.  One-shot learning model structure

    图  角度特征姿态识别结果示意图

    Figure  8.  Schematic diagram of recognition results of angular features

    图  距离特征姿态识别结果示意图

    Figure  9.  Schematic diagram of distance feature pose recognition results

    表  1  七种姿态识别结果

    Table  1.   Recognition results of seven gestures

    Poses Experiments Recognition error Recognition rate/%
    A 50 0 100.00
    B 50 0 100.00
    C 50 1 98.00
    D 50 0 100.00
    E 50 1 98.00
    F 50 2 96.00
    G 50 2 96.00
    下载: 导出CSV

    表  2  七种算法识别率对比

    Table  2.   Comparison of recognition rates of seven algorithms

    Algorithm type Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5 Algorithm 6 Text algorithm
    Average recognition rate/% 97.30 90.78 98.14 97.80 96.16 93.07 98.29
    Average recognition time/ms 42 58 47 34 44 52 32
    下载: 导出CSV
  • [1] Henry P, Krainin M, Herbst E, et al. RGB-D mapping: using Kinect-style depth cameras for dense 3D modeling of indoor environments[J]. Int J Rob Res, 2012, 31(5): 647-663. doi: 10.1177/0278364911434148
    [2] 黄国范, 李亚. 人体动作姿态识别综述[J]. 电脑知识与技术, 2013, 12(1): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS201301045.htm

    Huang G F, Li Y. A survey of human action and pose recognition[J]. Comput Knowl Technol, 2013, 12(1): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS201301045.htm
    [3] Shotton J, Sharp T, Kipman A, et al. Real-time human pose recognition in parts from single depth images[J]. Commun ACM, 2013, 56(1): 116-124. doi: 10.1145/2398356.2398381
    [4] 严利民, 杜斌, 郭强, 等. 基于局部扫描法对倾斜指势的识别[J]. 光电工程, 2016, 43(12): 147-153. doi: 10.3969/j.issn.1003-501X.2016.12.023

    Yan L M, Du B, Guo Q, et al. Recognize the tilt fingertips by partial scan algorithm[J]. Opto-Electron Eng, 2016, 43(12): 147-153. doi: 10.3969/j.issn.1003-501X.2016.12.023
    [5] 李红波, 丁林建, 吴渝, 等. 基于Kinect骨骼数据的静态三维手势识别[J]. 计算机应用与软件, 2015, 14(9): 161-165. doi: 10.3969/j.issn.1000-386x.2015.09.039

    Li H P, Ding L J, Wu Y, et al. Static three-dimensional gesture recognition based on Kinect skeleton data[J]. Comput Appl Softw, 2015, 14(9): 161-165. doi: 10.3969/j.issn.1000-386x.2015.09.039
    [6] Cao Z, Simon T, Wei S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Conference on Computer Vision and Pattern Recognition(CVPR), 2017: 7291-7299.
    [7] Pfitscher M, Welfer D, Evaristo José Do Nascimento, et al. Article Users Activity Gesture Recognition on Kinect Sensor Using Convolutional Neural Networks and FastDTW for Controlling Movements of a Mobile Robot[J]. Inteligencia Artificial Revista Iberoamericana de Inteligencia Artificial, 2019, 22(63): 121-134. http://www.researchgate.net/publication/332227318_Article_Users_Activity_Gesture_Recognition_on_Kinect_Sensor_Using_Convolutional_Neural_Networks_and_FastDTW_for_Controlling_Movements_of_a_Mobile_Robot/download
    [8] 赵海勇. 基于视频流的运动人体行为识别研究[D]. 西安: 西安电子科技大学, 2011.

    Zhao H Y. Research of human action recognition based on video stream[D]. Xi'an: Xidian University, 2011.
    [9] Xu W Y, Wu M Q, Zhao M, et al. Human action recognition using multilevel depth motion maps[J]. IEEE Access, 2019, 7: 41811-41822. doi: 10.1109/ACCESS.2019.2907720
    [10] Vinyals O, Blundell C, Lillicrap T, et al. Matching networks for one shot learning[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016: 3637-3645.
    [11] 朱大勇, 郭星, 吴建国. 基于Kinect三维骨骼节点的动作识别方法[J]. 计算机工程与应用, 2018, 54(20): 152-158. doi: 10.3778/j.issn.1002-8331.1706-0285

    Zhu D Y, Guo X, Wu J G. Action recognition method using Kinect 3D skeleton data[J]. Comput Eng Appl, 2018, 54(20): 152-158. doi: 10.3778/j.issn.1002-8331.1706-0285
    [12] 蔡兴泉, 涂宇欣, 余雨婕, 等. 基于少量关键序列帧的人体姿态识别方法[J]. 图学学报, 2019, 40(3): 532-538. https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX201903017.htm

    Cai X Q, Tu Y X, Yu Y J, et al. Human posture recognition method based on few key frames sequence[J]. J Graph, 2019, 40(3): 532-538. https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX201903017.htm
    [13] 钱银中, 沈一帆. 姿态特征与深度特征在图像动作识别中的混合应用[J]. 自动化学报, 2019, 45(3): 626-636. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201903016.htm

    Qian Y Z, Shen Y F. Hybrid of pose feature and depth feature for action recognition in static image[J]. Acta Autom Sin, 2019, 45(3): 626-636. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201903016.htm
    [14] Monir S, Rubya S, Ferdous H S. Rotation and scale invariant posture recognition using Microsoft Kinect skeletal tracking feature[C]//2012 12th International Conference on Intelligent Systems Design and Applications (ISDA), 2012: 829-842.
    [15] 郭同欢, 陈姚节, 林玲. 基于姿态角的双Kinect数据融合技术及应用[J]. 科学技术与工程, 2019, 19(29): 172-178. doi: 10.3969/j.issn.1671-1815.2019.29.028

    Guo T H, Chen Y J, Lin L. Gesture recognition based on the gesture angle of dual Kinect[J]. Sci Technol Eng, 2019, 19(29): 172-178. doi: 10.3969/j.issn.1671-1815.2019.29.028
    [16] Wang P, Liu L Q, Shen C H, et al. Multi-attention network for one shot learning[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2721-2729.
    [17] Yang Y, Saleemi I, Shah M. Discovering motion primitives for unsupervised grouping and one-shot learning of human actions, gestures, and expressions[J]. IEEE Trans Pattern Anal Mach Intell, 2013, 35(7): 1635-1648. doi: 10.1109/TPAMI.2012.253
    [18] Sundermeyer M, Alkhouli T, Wuebker J, et al. Translation modeling with bidirectional recurrent neural networks[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014: 14-25.
    [19] Cheng X L, He M Y, Duan W J. Machine vision based physical fitness measurement with human posture recognition and skeletal data smoothing[C]//2017 International Conference on Orange Technologies (ICOT), 2017: 323-342.
    [20] Li Q M, Lin W X, Li J. Human activity recognition using dynamic representation and matching of skeleton feature sequences from RGB-D images[J]. Signal Process Image Commun, 2018, 68: 265-272. doi: 10.1016/j.image.2018.06.013
    [21] Zhang Z Q, Liu Y N, Li A, et al. A novel method for user-defined human posture recognition using Kinect[C]//2014 7th International Congress on Image and Signal Processing, 2014: 724-739.
    [22] Sagayam K M, Hemanth D J. Hand posture and gesture recognition techniques for virtual reality applications: a survey[J]. Virtual Real, 2017, 21(2): 91-107. doi: 10.1007/s10055-016-0301-0
    [23] Stephenson R M, Chai R, Eager D. Isometric finger pose recognition with sparse channel SpatioTemporal EMG imaging[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2018, 2018: 5232-5235. http://www.ncbi.nlm.nih.gov/pubmed/30441518
    [24] Vishwakarma D K, Singh T. A visual cognizance based multi-resolution descriptor for human action recognition using key pose[J]. AEU-Int J Electron Commun, 2019, 107: 157-169. doi: 10.1016/j.aeue.2019.05.023
    [25] Liu X X, Feng X Y, Pan S J, et al. Skeleton tracking based on Kinect camera and the application in virtual reality system[C]//Proceedings of the 4th International Conference on Virtual Reality, 2018: 21-25.
    [26] Bulbul M F, Islam S, Ail H. 3D human action analysis and recognition through GLAC descriptor on 2D motion and static posture images[J]. Multimed Tools Appl, 2019, 78(15): 21085-21111. doi: 10.1007/s11042-019-7365-2
    [27] Agahian S, Negin F, Köse C. An efficient human action recognition framework with pose-based spatiotemporal features[J]. Eng Sci Technol, 2020, 23(1): 196-203. http://www.sciencedirect.com/science/article/pii/S2215098618312345
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  150
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-23
  • 修回日期:  2020-06-02

目录

    /

    返回文章
    返回