留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介电润湿液体透镜仿生复眼的设计与仿真

赵瑞 彭超 张凯 孔梅梅 陈陶 关建飞 梁忠诚

赵瑞, 彭超, 张凯, 孔梅梅, 陈陶, 关建飞, 梁忠诚. 介电润湿液体透镜仿生复眼的设计与仿真[J]. 机械工程学报, 2021, 48(2): 200120. doi: 10.12086/oee.2021.200120
引用本文: 赵瑞, 彭超, 张凯, 孔梅梅, 陈陶, 关建飞, 梁忠诚. 介电润湿液体透镜仿生复眼的设计与仿真[J]. 机械工程学报, 2021, 48(2): 200120. doi: 10.12086/oee.2021.200120
Zhao Rui, Peng Chao, Zhang Kai, Kong Meimei, Chen Tao, Guan Jianfei, Liang Zhongcheng. Design and simulation of bionic compound eye with electrowetting liquid lens[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200120. doi: 10.12086/oee.2021.200120
Citation: Zhao Rui, Peng Chao, Zhang Kai, Kong Meimei, Chen Tao, Guan Jianfei, Liang Zhongcheng. Design and simulation of bionic compound eye with electrowetting liquid lens[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200120. doi: 10.12086/oee.2021.200120

介电润湿液体透镜仿生复眼的设计与仿真

doi: 10.12086/oee.2021.200120
基金项目: 

国家自然科学基金资助项目 61775102

国家自然科学基金资助项目 61905117

基础加强计划技术领域基金项目 2019-JCJQ-JJ-446

详细信息
    作者简介:

    赵瑞(1977-),女,博士,教授,主要从事微流控光学,以微流控芯片为基础,开展基于电润湿理论、介电泳理论及相关器件的研究与研制。E-mail:zhaor@njupt.edu.cn

    通讯作者:

    梁忠诚(1957-),男,博士,教授,主要从事光电子器件与系统、信息光学及应用、光信息存储技术、无线光通信技术、微流控光电子技术、软物质系统、光电子学等方面的研究。E-mail: zcliang@njupt.edu.cn

  • 中图分类号: O439

Design and simulation of bionic compound eye with electrowetting liquid lens

Funds: 

National Natural Science Foundation of China 61775102

National Natural Science Foundation of China 61905117

Foundation Enhancement Plan Technical Area Fund Project 2019-JCJQ-JJ-446

  • 摘要: 为解决仿生复眼系统不能自适应变焦的问题,提出了一种基于介电润湿液体透镜曲面阵列的可变焦仿生复眼系统。分析系统结构对成像性能的影响,计算系统的自适应变焦能力及相应像平面可移动范围。结果表明:系统成像的视场角随着基底曲率的增大而增大。相比于非均匀透镜阵列,均匀透镜阵列可明显降低系统的离焦像差。适当减小子透镜单元尺寸,也可以达到降低边缘透镜离焦像差的目的。当物距或者接收器位置发生改变时,通过调整子透镜单元焦距降低系统的离焦像差。系统接收器可移动范围为1.9 mm~15 mm。

     

  • 图  基于介电润湿液体透镜的仿生复眼系统设计原理。

    (a) 侧面图;(b) 透镜单元排列方式;(c) 透镜结构图;(d) 成像原理示意图

    Figure  1.  Design principle of the bionic compound eye system based on electrowetting liquid lens.

    (a) Side view; (b) Lens units arrangement; (c) Lens unit structure diagram; (d) Schematic diagram of imaging principle

    图  不同视场情况下,不同曲率仿复眼系统的成像效果。(a) R1=10 mm,正入射;(b) R2=15 mm,正入射;(c) R3=20 mm,正入射;(d) R1=10 mm,视场角20°;(e) R2=15 mm,视场角20°;(f) R3=20 mm,视场角20°;(g) R1=10 mm,视场角35°;(h) R2=15 mm,视场角35°;(i) R3=20 mm,视场角35°

    Figure  2.  Imaging effect of a compound eye system with different curvatures in different fields of view. (a) R1=10 mm, normal incidence; (b) R2=15 mm, normal incidence; (c) R3=20 mm, normal incidence; (d) R1=10 mm, field angle 20°; (e) R2=15 mm, field angle 20°; (f) R3=20 mm, field angle 20°; (g) R1=10 mm, field angle 35°; (h) R2=15 mm, field angle 35°; (i) R3=20 mm, field angle 35°

    图  不同直径透镜单元对复眼系统成像效果的影响

    Figure  3.  The effects of different diameters of lens unit on the imaging effect of the compound eye system

    图  透镜单元均匀性对仿复眼系统成像性能的影响

    Figure  4.  Effect of lens unit uniformity on imaging performance of a compound eye system

    图  仿生复眼系统对物距变化的自适应性。(a) 调焦前,成像面偏离接收器;(b) 调焦后,成像面再次回到接收器位置;(c) 调焦前后各环透镜均方根半径

    Figure  5.  The adaptability of the bionic compound eye system to the changes in the object distance. (a) Before focusing, the imaging surface deviates from the receiver; (b) After focusing, the imaging surface returns to the receiver position again; (c) RMS of each ring lens before and after focusing

    图  仿生复眼系统的成像接收面的接收范围。(a) 最远接收位置;(b) 最近接收位置

    Figure  6.  Reception range of the imaging receiving surface of the bionic compound eye system. (a) Furthest receiving position; (b) Nearest receiving position

    表  1  仿生复眼的各项参数

    Table  1.   Various parameters of bionic compound eye

    Parameters Value
    Radius of base layer R/mm 15
    Number of sub-eye M 37
    Aperture of sub-eye D/mm 1
    Index of conductive liquid n1 1.33
    Index of insulating liquid n2 1.539
    Image sensor change distance Δd/mm 3
    Moving distance of object surface ΔL/mm 7
    下载: 导出CSV
  • [1] 史成勇. 仿生曲面复眼系统设计及其图像处理研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017: 1–102. https://d.wanfangdata.com.cn/thesis/Y3353261

    Shi C Y. Research on the design and image process of bioinspired spherical compound eye imaging system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Science, 2017: 1–102. https://d.wanfangdata.com.cn/thesis/Y3353261
    [2] 贾文武, 汪岳峰, 黄峰, 等. 像差对复眼透镜光束整形性能的影响分析[J]. 激光与光电子学进展, 2010, 47(11): 110801. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201011009.htm

    Jia W W, Wang Y F, Huang F, et al. Effects of aberration on performance of fly's eye integrator[J]. Laser & Optoelectronics Progress, 2010, 47(11): 110801. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201011009.htm
    [3] 王程, 朱向冰, 田丽伟, 等. 基于LED和复眼透镜的自适应前照灯的光学设计[J]. 激光与光电子学进展, 2015, 52(4): 042204. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201504024.htm

    Wang C, Zhu X B, Tian L W, et al. Optical design of the adaptive front lighting system based on the led and the fly's-eye lens[J]. Laser & Optoelectronics Progress, 2015, 52(4): 042204. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201504024.htm
    [4] 何建争. 球面仿生复眼的标定与定位研究[D]. 合肥: 中国科学技术大学, 2017: 1–71. http://cdmd.cnki.com.cn/Article/CDMD-10358-1017073425.htm

    He J Z. Research on calibration and positioning of a spherical artificial compound eye[D]. Hefei: University of Science and Technology of China, 2017: 1–71. http://cdmd.cnki.com.cn/Article/CDMD-10358-1017073425.htm
    [5] Leitel R, Brückner A, Buß W, et al. Curved artificial compound-eyes for autonomous navigation[J]. Proc SPIE, 2014, 9130: 91300H. http://spie.org/x648.xml?product_id=2052710
    [6] Tanida J, Mima H, Kagawa K, et al. Application of a compound imaging system to odontotherapy[J]. Opt Rev, 2015, 22(2): 322–328. doi: 10.1007/s10043-015-0052-2
    [7] Song Y M, Xie Y Z, Malyarchuk V, et al. Digital cameras with designs inspired by the arthropod eye[J]. Nature, 2013, 497(7447): 95–99. doi: 10.1038/nature12083
    [8] Li Z W, Xiao J L. Mechanics and optics of stretchable elastomeric microlens array for artificial compound eye camera[J]. J Appl Phys, 2015, 117(1): 014904. doi: 10.1063/1.4905299
    [9] Tanida J, Kumagai T, Yamada K, et al. Thin observation module by bound optics (TOMBO): concept and experimental verification[J]. Appl Opt, 2001, 40(11): 1806–1813. doi: 10.1364/AO.40.001806
    [10] Tanida J, Shogenji R, Kitamura Y, et al. Color imaging with an integrated compound imaging system[J]. Opt Express, 2003, 11(18): 2109–2117. doi: 10.1364/OE.11.002109
    [11] Miyatake S, Shogenji R, Miyamoto M, et al. Thin observation module by bound optics (TOMBO) with color filters[J]. Proc SPIE, 2004, 5301: 7–12. doi: 10.1117/12.533388
    [12] Hornsey R, Thomas P, Wong W, et al. Electronic compound-eye image sensor: construction and calibration[J]. Proc SPIE, 2004, 5301: 13–24. doi: 10.1117/12.526811
    [13] Duparré J, Radtke D, Tünnermann A. Spherical artificial compound eye captures real images[J]. Proc SPIE, 2007, 6466: 64660K. doi: 10.1117/12.696258
    [14] Floreano D, Pericet-Camara R, Viollet S, et al. Miniature curved artificial compound eyes[J]. Proc Natl Acad Sci, 2013, 110(23): 9267–9272. doi: 10.1073/pnas.1219068110
    [15] 郝永平, 赵龙飞, 张嘉易. 非球面变焦距曲面复眼的优化研究[J]. 红外与激光工程, 2015, 44(1): 157–161. doi: 10.3969/j.issn.1007-2276.2015.01.027

    Hao Y P, Zhao L F, Zhang J Y. Optimal research of aspherical zoom curved compound eye[J]. Infrared Laser Eng, 2015, 44(1): 157–161. doi: 10.3969/j.issn.1007-2276.2015.01.027
    [16] Shahini A, Jin H, Zhou Z X, et al. Toward individually tunable compound eyes with transparent graphene electrode[J]. Bioinspir Biomim, 2017, 12(4): 046002. doi: 10.1088/1748-3190/aa7084
    [17] Cheng Y, Cao J, Meng L T, et al. Reducing defocus aberration of a compound and human hybrid eye using liquid lens[J]. Appl Opt, 2018, 57(7): 1679–1688. doi: 10.1364/AO.57.001679
    [18] 曹杰, 郝群, 肖宇晴, 等. 一种基于液体透镜的自适应调焦方法及系统: 106814450A[P]. 2017-06-09.
    [19] Cao A X, Wang J Z, Pang H, et al. Design and fabrication of a multifocal bionic compound eye for imaging[J]. Bioinspir Biomim, 2018, 13(2): 026012. doi: 10.1088/1748-3190/aaa901
    [20] 朱凌峰, 孔梅梅, 宋驰, 等. 电润湿双液体透镜的界面面型分析[J]. 光电工程, 2016, 43(12): 65–71. doi: 10.3969/j.issn.1003-501X.2016.12.011

    Zhu L F, Kong M M, Song C, et al. Analysis on the interface shape of double liquid lens based on electro-wetting technology[J]. Opto-Electron Eng, 2016, 43(12): 65–71. doi: 10.3969/j.issn.1003-501X.2016.12.011
    [21] Kuiper S, Hendriks B H W. Variable-focus liquid lens for miniature cameras[J]. Appl Phys Lett, 2004, 85(7): 1128–1130. doi: 10.1063/1.1779954
    [22] Li L, Xiao L, Wang J H, et al. Movable electrowetting optofluidic lens for optical axial scanning in microscopy[J]. Opto-Electron Adv, 2019, 2(2): 180025. http://www.zhangqiaokeyan.com/academic-journal-cn_photoelectric-progress-english_thesis/0201272375194.html
    [23] 赵瑞, 田志强, 刘启超, 等. 介电润湿液体光学棱镜[J]. 光学学报, 2014, 34(12): 1223003. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201412042.htm

    Zhao R, Tian Z Q, Liu Q C, et al. Electrowetting-based liquid prism[J]. Acta Opt Sin, 2014, 34(12): 1223003. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201412042.htm
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  163
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-13
  • 修回日期:  2020-07-14

目录

    /

    返回文章
    返回