-
摘要: 针对现有标定方法在相机无公共视场情况下的局限性,本文提出使用双平面标定板对双相机进行同时标定的方法。通过推导两个相机与两个标定板间的坐标变换,将待标定相机与参考相机的相对位姿关系的求解转换为较为成熟的手眼标定方程求解。通过实验验证:该方法可实现双相机的同时标定,且方法的绝对误差不超过0.089 mm,较为可靠;在双视角三维测量系统中,与相位-深度的累积误差不超过0.116 mm,可为进一步的数据融合提供可靠的初值。此外,由于本方法灵活方便,可适用于多视角三维测量系统的同时标定。Abstract: In view of the limitations of the existing methods when the camera has no common field of view, this paper proposes a method of using two plane calibration plates to calibrate two cameras at the same time. By deriving the coordinate transformation between the two cameras and two calibration plates, the solution of the relative pose relationship between any camera and the reference camera is transformed into a more mature hand-eye calibration equation. The experimental results show that this method can achieve simultaneous calibration of two cameras, and the absolute error is less than 0.089 mm. In the dual vision 3D measurement system, the cumulative error with phase height is less than 0.116 mm, which can provide a reliable initial value for the next step of data fusion.
-
Key words:
- dual vision measurement /
- global calibration /
- system calibration /
- fringe projection
-
表 1 全局标定精度验证结果
Table 1. Verification results of global calibration accuracy
摆放位置 最大误差/mm 最小误差/mm 平均误差/mm 1 0.089 0.036 0.075 2 0.077 0.039 0.069 3 0.084 0.045 0.071 表 2 双视角测量结果(单位:mm)
Table 2. Measurement results of double view angle (unit: mm)
台阶实际间距 17.603 18.422 13.258 18.212 视角1测量间距 17.637 18.386 13.291 18.255 视角1测量误差 0.034 0.036 0.033 0.043 视角2测量间距 17.643 18.387 13.225 18.253 视角2测量误差 0.040 0.035 0.033 0.041 双视角测量结果 18.408 17.611 13.994 17.618 双视角测量误差 0.102 0.097 0.090 0.116 -
[1] 白雪飞, 张宗华. 基于彩色条纹投影术的三维形貌测量[J]. 仪器仪表学报, 2017, 38(8): 1912-1925. doi: 10.3969/j.issn.0254-3087.2017.08.009Bai X F, Zhang Z H. 3D shape measurement based on colour fringe projection techniques[J]. Chin J Sci Instrum, 2017, 38(8): 1912-1925. doi: 10.3969/j.issn.0254-3087.2017.08.009 [2] 唐燕, 陈文静, 张强, 等. 神经网络获取三维面形研究[J]. 光电工程, 2007, 34(12): 61-65. doi: 10.3969/j.issn.1003-501X.2007.12.013Tang Y, Chen W J, Zhang Q, et al. BP neural network applied to 3D object measurement based on fringe pattern projection[J]. Opto-Electron Eng, 2007, 34(12): 61-65. doi: 10.3969/j.issn.1003-501X.2007.12.013 [3] Li B W, Zhang S. Superfast high-resolution absolute 3D recovery of a stabilized flapping flight process[J]. Opt Express, 2017, 25(22): 27270-27282. doi: 10.1364/OE.25.027270 [4] 范生宏, 刘昌儒, 亓晓彤, 等. 结构光三维测量系统精度分析及验证[J]. 光电工程, 2014, 41(5): 52-56. doi: 10.3969/j.issn.1003-501X.2014.05.009Fan S H, Liu C R, Qi X T, et al. Accuracy analysis and verification of structured light 3D measurement system[J]. Opto-Electron Eng, 2014, 41(5): 52-56. doi: 10.3969/j.issn.1003-501X.2014.05.009 [5] 罗剑, 袁家虎. 光栅投影式三维摄影测量仪的几何标定方法[J]. 光电工程, 2005, 32(11): 43-48, 67. doi: 10.3969/j.issn.1003-501X.2005.11.012Luo J, Yuan J H. Geometric calibration method of 3D photogrammetric instruments using grating projection[J]. Opto-Electron Eng, 2005, 32(11): 43-48, 67. doi: 10.3969/j.issn.1003-501X.2005.11.012 [6] Chen M Y, Tang Y C, Zhou X J, et al. High-accuracy multi-camera reconstruction enhanced by adaptive point cloud correction algorithm[J]. Opt Lasers Eng, 2019, 122: 170-183. doi: 10.1016/j.optlaseng.2019.06.011 [7] 苏显渝, 程晓雪, 郭履容. 三维物体360°面形自动测量方法[J]. 光学学报, 1989, 9(7): 670-672. doi: 10.3321/j.issn:0253-2239.1989.07.017Su X Y, Cheng X X, Guo L R. An automated method for 360° surface measurement of 3-D objects[J]. Acta Opt Sin, 1989, 9(7): 670-672. doi: 10.3321/j.issn:0253-2239.1989.07.017 [8] 鲁亚楠, 万子敬, 王向军. 一种无公共视场相机位置关系的求解方法[J]. 应用光学, 2017, 38(3): 400-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201703010.htmLu Y N, Wan Z J, Wang X J. Solution to relative position of cameras without public FOV[J]. J Appl Opt, 2017, 38(3): 400-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201703010.htm [9] Liu Z, Meng Z Z, Gao N, et al. Calibration of the relative orientation between multiple depth cameras based on a three-dimensional target[J]. Sensors(Basel), 2019, 19(13): 3008. doi: 10.3390/s19133008 [10] Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Trans Pattern Anal Mach Intell, 1992, 14(2): 239-256. doi: 10.1109/34.121791 [11] 楚圣辉, 张慧萌, 陈硕, 等. 大场景下多目立体视觉标定方法的研究[J]. 现代计算机(专业版), 2017(15): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJS201715008.htmChu S H, Zhang H M, Chen S, et al. Research on the calibration method of multi eye stereo vision in large scenes[J]. Mod Comput, 2017(15): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJS201715008.htm [12] 潘华伟, 杨振先, 高春鸣, 等. 一种基于平面模板的多摄像机标定方法[J]. 计算机应用研究, 2011, 28(11): 4357-4360. doi: 10.3969/j.issn.1001-3695.2011.11.096Pan H W, Yang Z X, Gao C M, et al. Multi-camera calibration method using planar patterns[J]. Appl Res Comput, 2011, 28(11): 4357-4360. doi: 10.3969/j.issn.1001-3695.2011.11.096 [13] 郎威, 薛俊鹏, 李承杭, 等. 基于旋转台参数标定实现多视角点云拼接[J]. 中国激光, 2019, 46(11): 1104003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201911031.htmLang W, Xue J P, Li C H, et al. Splicing of multi-view point clouds based on calibrated parameters of turntable[J]. Chinese J Lasers, 2019, 46(11): 1104003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201911031.htm [14] Zhang Z, Zhang D, Peng X. Performance analysis of a 3D full-field sensor based on fringe projection[J]. Opt Lasers Eng, 2004, 42(3): 341-353. doi: 10.1016/j.optlaseng.2003.11.004 [15] 周灿林, 司书春, 高成勇, 等. 基于格莱姆-施密特正交化两步相移轮廓术[J]. 光电工程, 2013, 40(6): 37-42. doi: 10.3969/j.issn.1003-501X.2013.06.007Zhou C L, Si S C, Gao C Y, et al. Two-step phase-shifting profilometry based on Gram-Schmidt orthonormalization[J]. Opto-Electron Eng, 2013, 40(6): 37-42. doi: 10.3969/j.issn.1003-501X.2013.06.007 [16] Tsai R Y, Lenz R K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J]. IEEE Trans Robot Autom, 1989, 5(3): 345-358. doi: 10.1109/70.34770 [17] 毛剑飞, 邵黄芳, 蒋莉, 等. 求解方程RaRx=RxRb的四元数几何研究[J]. 中国图象图形学报, 2010, 15(6): 951-957. doi: 10.11834/jig.20100615Mao J F, Shao H F, Jiang L, et al. Quaternion geometrical analysis on solving equation RaRx=RxRb[J]. J Image Graph, 2010, 15(6): 951-957. doi: 10.11834/jig.20100615 [18] 王昌云, 李立君. 基于四元数的机器人手眼标定算法[J]. 传感器与微系统, 2019, 38(12): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201912036.htmWang C Y, Li L J. Hand-eye calibration algorithm for robot based on quaternion[J]. Transducer Microsyst Technol, 2019, 38(12): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201912036.htm [19] 胡为, 刘冲, 傅莉, 等. 一种高精度的机器人手眼标定算法[J]. 火力与指挥控制, 2018, 43(9): 19-24. doi: 10.3969/j.issn.1002-0640.2018.09.005Hu W, Liu C, Fu L, et al. An algorithm for robot hand eye calibration with high accuracy[J]. Fire Control Comm Control, 2018, 43(9): 19-24. doi: 10.3969/j.issn.1002-0640.2018.09.005 [20] 魏振忠, 高明, 周富强, 等. 基于辅助摄像机的机器人延伸手眼标定方法[J]. 光电工程, 2008, 35(9): 76-80, 121. doi: 10.3969/j.issn.1003-501X.2008.09.016Wei Z Z, Gao M, Zhou F Q, et al. Robot extended eye-in-hand calibration method based on an assistant camera[J]. Opto-Electron Eng, 2008, 35(9): 76-80, 121. doi: 10.3969/j.issn.1003-501X.2008.09.016