留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于B样条函数的快速波前复原

陈浩 魏凌 李恩德 何益 杨金生 李喜琪 樊新龙 杨泽平 张雨东

陈浩, 魏凌, 李恩德, 何益, 杨金生, 李喜琪, 樊新龙, 杨泽平, 张雨东. 基于B样条函数的快速波前复原[J]. 机械工程学报, 2021, 48(2): 200160. doi: 10.12086/oee.2021.200160
引用本文: 陈浩, 魏凌, 李恩德, 何益, 杨金生, 李喜琪, 樊新龙, 杨泽平, 张雨东. 基于B样条函数的快速波前复原[J]. 机械工程学报, 2021, 48(2): 200160. doi: 10.12086/oee.2021.200160
Chen Hao, Wei Ling, Li Ende, He Yi, Yang Jinsheng, Li Xiqi, Fan Xinlong, Yang Zeping, Zhang Yudong. A B-spline based fast wavefront reconstruction algorithm[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200160. doi: 10.12086/oee.2021.200160
Citation: Chen Hao, Wei Ling, Li Ende, He Yi, Yang Jinsheng, Li Xiqi, Fan Xinlong, Yang Zeping, Zhang Yudong. A B-spline based fast wavefront reconstruction algorithm[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200160. doi: 10.12086/oee.2021.200160

基于B样条函数的快速波前复原

doi: 10.12086/oee.2021.200160
基金项目: 

国家自然科学基金资助项目 61605210

国家自然科学基金资助项目 61675226

国家自然科学基金资助项目 61378090

国家仪器专项 2012YQ120080

国家重点研发计划课题资助项目 2016YFC0102500

国家重点研发计划课题资助项目 2017YFB0403700

详细信息
    作者简介:

    陈浩(1992-),男,博士,主要从事自适应光学、波前重建和图像处理的研究。E-mail:chenhao114@mails.ucas.ac.cn

  • 中图分类号: O436.3

A B-spline based fast wavefront reconstruction algorithm

Funds: 

National Natural Science Foundation of China 61605210

National Natural Science Foundation of China 61675226

National Natural Science Foundation of China 61378090

the National Instrumentation Program 2012YQ120080

the National Key Research and Development Program of China 2016YFC0102500

the National Key Research and Development Program of China 2017YFB0403700

More Information
  • 摘要: 从斜率复原波前是夏克-哈特曼波前传感器这一类斜率采样探测器的核心流程。传统的复原算法中,区域法对局部波前的复原效果好,但易受斜率噪声的影响,同时空间分辨率较低;模式法抗噪能力强,但没有精确复原局部波前的能力。本文提出了基于B样条函数的快速复原算法,将波前展开为B样条曲面的线性组合,并将复原问题从斜率最小二乘问题转化为泊松方程,利用斜率的Taylor展开式估计散度,再通过超松驰迭代法进行快速求解。该方法将B样条函数的理论散度积分和实际散度估计分离,可以方便地扩展到不同阶次和不同节点数量的B样条基复原算法中。另外,通过改变散度估计的计算区域,可以灵活控制并平衡算法的局部复原能力和抗噪能力。对变形镜驱动器响应函数的测量实验表明,该方法具有较好的局部复原能力、抗噪能力和任意精度的空间分辨率。

     

  • 图  B样条基曲面。(a) 1阶B样条基曲面;(b) 2阶B样条基曲面

    Figure  1.  Surfaces of B-spline basis. (a) First-order B-spline surface; (b) Second-order B-spline surface

    图  方形排布的B样条基位置与子孔径之间的关系。(a) Fried;(b) Southwell

    Figure  2.  Positional relation between B-spline basis and subaperture with a square layout. (a) Fried model; (b) Southwell model

    图  B样条散度积分示意图

    Figure  3.  B-spline divergence integral diagram

    图  散度近似计算示意图

    Figure  4.  Diagram of divergence approximation

    图  4号驱动器的干涉仪测量数据

    Figure  5.  Measurement data of No.4 actuator obtained with ZYGO interferometer

    图  不同复原方法复原结果。(a) 本文算法重建波前;(b) 本文算法的残余波前;(c) 基于Zernike多项式的模式法重建波前;(d) 模式法的残余波前;(e) Fried区域法重建波前;(f) 区域法的残余波前

    Figure  6.  Wavefronts restored by different methods. (a) Wavefront restored by our method; (b) Residual wavefront error of (a); (c) Wavefront restored by the modal method; (d) Residual wavefront error of (c); (e) Wavefront restored by the zonal method; (f) Residual wavefront error of (e)

    图  不同驱动器复原残差

    Figure  7.  PV and RMS results of residual wavefront reconstructed by different methods

    表  1  不同复原方法结果比较(4#驱动器)

    Table  1.   Comparison results of different wavefront reconstruction methods

    数据类型 波前 残差 相关值/%
    PV/μm RMS/μm PV/μm RMS/μm
    原始 1.579 0.159 - - -
    区域法 1.493 0.184 0.277 0.026 94.8
    Zernike模式法(35项) 1.163 0.259 1.185 0.232 85.1
    本文方法 1.612 0.167 0.162 0.028 97.2
    下载: 导出CSV

    表  2  不同驱动器复原残差及相关值

    Table  2.   Residual reconstruction error and correlation values of different actuators

    驱动器序号 区域法 Zernike模式法(35项) 本文方法
    PV/μm RMS/μm 相关值/% PV/μm RMS/μm 相关值/% PV/μm RMS/μm 相关值/%
    1 0.305 0.031 99.4 1.772 0.248 84.3 0.219 0.030 99.8
    2 0.355 0.038 99.1 1.715 0.218 82.5 0.299 0.035 99.7
    3 0.343 0.033 99.7 1.767 0.237 81.2 0.241 0.031 99.6
    4 0.277 0.026 94.8 1.185 0.232 85.1 0.162 0.028 97.2
    5 0.258 0.031 98.7 1.825 0.258 85.6 0.196 0.023 99.8
    6 0.323 0.028 99.6 1.754 0.243 78.3 0.172 0.027 99.7
    7 0.332 0.034 99.5 2.004 0.261 82.9 0.217 0.033 99.6
    下载: 导出CSV
  • [1] Furukawa Y, Takaie Y, Maeda Y, et al. Development of one-shot aspheric measurement system with a Shack-Hartmann sensor[J]. Appl Opt, 2016, 55(29): 8138–8144. doi: 10.1364/AO.55.008138
    [2] Wu Y, He J C, Zhou X T, et al. A limitation of Hartmann-Shack system in measuring wavefront aberrations for patients received laser refractive surgery[J]. PLoS One, 2015, 10(2): e0117256. doi: 10.1371/journal.pone.0117256
    [3] 杨泽平, 李恩德, 张小军, 等. "神光-Ⅲ"主机装置的自适应光学波前校正系统[J]. 光电工程, 2018, 45(3): 180049. doi: 10.12086/oee.2018.180049

    Yang Z P, Li E D, Zhang X J, et al. Adaptive optics correction systems on Shen Guang Ⅲ facility[J]. Opto-Electron Eng, 2018, 45(3): 180049. doi: 10.12086/oee.2018.180049
    [4] 周睿, 魏凌, 李新阳, 等. 点光源哈特曼最优阈值估计方法研究[J]. 物理学报, 2017, 66(9): 090701. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201709006.htm

    Zhou R, Wei L, Li X Y, et al. Shack-Hartmann optimum threshold estimation for the point source[J]. Acta Phys Sin, 2017, 66(9): 090701. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201709006.htm
    [5] Wei L, Shi G H, Lu J, et al. Centroid offset estimation in the Fourier domain for a highly sensitive Shack–Hartmann wavefront sensor[J]. J Opt, 2013, 15(5): 055702. doi: 10.1088/2040-8978/15/5/055702
    [6] Fried D L. Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements[J]. J Opt Soc Am, 1977, 67(3): 370–375. doi: 10.1364/JOSA.67.000370
    [7] Southwell W H. Wave-front estimation from wave-front slope measurements[J]. J Opt Soc Am, 1980, 70(8): 998–1006. doi: 10.1364/JOSA.70.000998
    [8] Dai F Z, Tang F, Wang X Z, et al. Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry: comparisons of existing algorithms[J]. Appl Opt, 2012, 51(21): 5028–5037. doi: 10.1364/AO.51.005028
    [9] Lee H. Use of Zernike polynomials for efficient estimation of orthonormal aberration coefficients over variable noncircular pupils[J]. Opt Lett, 2010, 35(13): 2173–2175. doi: 10.1364/OL.35.002173
    [10] Nam J, Thibos L N, Iskander D R. Zernike radial slope polynomials for wavefront reconstruction and refraction[J]. J Opt Soc Am A, 2009, 26(4): 1035–1048. doi: 10.1364/JOSAA.26.001035
    [11] 汤国茂, 何玉梅, 廖周. 大型光学系统径向哈特曼像质检测方法[J]. 中国激光, 2010, 37(3): 795–799. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201003040.htm

    Tang G M, He Y M, Liao Z. Radial Hartmann method for measuring large optical system[J]. Chin J Lasers, 2010, 37(3): 795–799. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201003040.htm
    [12] Darudi A, Bakhshi H, Asgari R. Image restoration using aberration taken by a Hartmann wavefront sensor on extended object, towards real-time deconvolution[J]. Proc SPIE, 2015, 9530: 95300Q. doi: 10.1117/12.2184852
    [13] Seifert L, Tiziani H J, Osten W. Wavefront reconstruction with the adaptive Shack–Hartmann sensor[J]. Opt Commun, 2005, 245(1–6): 255–269. doi: 10.1016/j.optcom.2004.09.074
    [14] Ares M, Royo S. Comparison of cubic B-spline and Zernike-fitting techniques in complex wavefront reconstruction[J]. Appl Opt, 2006, 45(27): 6954–6964. doi: 10.1364/AO.45.006954
    [15] de Visser C C, Verhaegen M. Wavefront reconstruction in adaptive optics systems using nonlinear multivariate splines[J]. J Opt Soc Am A, 2013, 30(1): 82–95. doi: 10.1364/JOSAA.30.000082
    [16] Huang L, Xue J P, Gao B, et al. Spline based least squares integration for two-dimensional shape or wavefront reconstruction[J]. Opt Lasers Eng, 2017, 91: 221–226. doi: 10.1016/j.optlaseng.2016.12.004
    [17] Pant K K, Burada D R, Bichra M, et al. Weighted spline based integration for reconstruction of freeform wavefront[J]. Appl Opt, 2018, 57(5): 1100–1109. doi: 10.1364/AO.57.001100
    [18] Knott G D. Interpolating Cubic Splines[M]. Boston: Birkhäuser, 2000.
    [19] 叶其孝, 沈永欢. 实用数学手册[M]. 2版. 北京: 科学出版社, 2006.
    [20] Yang J S, Wei L, Chen H L, et al. Absolute calibration of Hartmann-Shack wavefront sensor by spherical wavefronts[J]. Opt Commun, 2010, 283(6): 910–916. doi: 10.1016/j.optcom.2009.11.022
    [21] Xie D X. A new block parallel SOR method and its analysis[J]. SIAM J Sci Comput, 2006, 27(5): 1513–1533. doi: 10.1137/040604777
    [22] Chamot S R, Dainty C, Esposito S. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor[J]. Opt Express, 2006, 14(2): 518–526. doi: 10.1364/OPEX.14.000518
    [23] Chanteloup J C F, Cohen M. Compact high resolution four wave lateral shearing interferometer[J]. Proc SPIE, 2004, 5252: 282–292. doi: 10.1117/12.513739
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  92
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-11
  • 修回日期:  2020-08-26

目录

    /

    返回文章
    返回