留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于YOLOv3和ASMS的目标跟踪算法

吕晨 程德强 寇旗旗 庄焕东 李海翔

吕晨, 程德强, 寇旗旗, 庄焕东, 李海翔. 基于YOLOv3和ASMS的目标跟踪算法[J]. 机械工程学报, 2021, 48(2): 200175. doi: 10.12086/oee.2021.200175
引用本文: 吕晨, 程德强, 寇旗旗, 庄焕东, 李海翔. 基于YOLOv3和ASMS的目标跟踪算法[J]. 机械工程学报, 2021, 48(2): 200175. doi: 10.12086/oee.2021.200175
Lv Chen, Cheng Deqiang, Kou Qiqi, Zhuang Huandong, Li Haixiang. Target tracking algorithm based on YOLOv3 and ASMS[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200175. doi: 10.12086/oee.2021.200175
Citation: Lv Chen, Cheng Deqiang, Kou Qiqi, Zhuang Huandong, Li Haixiang. Target tracking algorithm based on YOLOv3 and ASMS[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200175. doi: 10.12086/oee.2021.200175

基于YOLOv3和ASMS的目标跟踪算法

doi: 10.12086/oee.2021.200175
基金项目: 

国家自然科学基金资助项目 51774281

详细信息
    作者简介:

    吕晨(1994-),男,硕士研究生,主要从事模式识别,目标跟踪的研究。E-mail:286562685@qq.com

  • 中图分类号: TP181;TP391

Target tracking algorithm based on YOLOv3 and ASMS

Funds: 

National Natural Science Foundation of China 51774281

More Information
  • 摘要: 为了解决传统算法在全自动跟踪过程中遇到遮挡或运动速度过快时的目标丢失问题,本文提出一种基于YOLOv3和ASMS的目标跟踪算法。首先通过YOLOv3算法进行目标检测并确定跟踪的初始目标区域,然后基于ASMS算法进行跟踪,实时检测并判断目标跟踪效果,通过二次拟合定位和YOLOv3算法实现跟踪目标丢失后的重新定位。为了进一步提升算法运行效率,本文应用增量剪枝方法,对算法模型进行了压缩。通过与当前主流算法进行对比,实验结果表明,本算法能够很好地解决受到遮挡时跟踪目标的丢失问题,提高了目标检测和跟踪的精度,且具有计算复杂度低、耗时少,实时性高的优点。

     

  • 图  YOLOv3的检测框架图

    Figure  1.  Block diagram of YOLOv3

    图  通过稀疏训练和通道剪枝获得剪枝后的YOLOv3

    Figure  2.  YOLOv3 pruned through sparse training and channel pruning

    图  基于YOLOv3和ASMS的跟踪算法流程图

    Figure  3.  The tracking algorithm flow chart based on YOLOv3 and ASMS

    图  联合YOLOv3-95和ASMS算法的跟踪效果

    Figure  4.  The tracking performance of algorithm based on YOLOv3-95 and ASMS

    图  传统ASMS算法的跟踪效果。(a) 行人;(b) 动物;(c) 小车

    Figure  5.  Tracking performance of the ASMS algorithm. (a) Pedestrian; (b) Animal; (c) Car

    图  KCF算法跟踪效果。(a) 行人;(b) 动物;(c) 小车

    Figure  6.  Tracking performance of the KCF algorithm. (a) Pedestrian; (b) Animal; (c) Car

    图  基于YOLOv3-95和ASMS算法的跟踪效果。(a) 行人;(b) 动物;(c) 小车

    Figure  7.  Tracking performance of the algorithm based on YOLOv3-95 and ASMS. (a) Pedestrian; (b) Animal; (c) Car

    图  巴氏系数的曲线变化图

    Figure  8.  Bhattacharyya coefficient curves of different algorithms

    图  巴氏系数的曲线变化图

    Figure  9.  Bhattacharyya coefficient curves of different algorithms

    表  1  对比模型和剪枝模型评价结果

    Table  1.   Evaluation results of comparison model and pruning model

    模型 精确度 mAP 速度/(f/s) 参数 体量
    CPU GPU
    YOLOv3-tiny 32.7 24.1 48 120 8.9M 33.1MB
    YOLOv3 55.8 57.9 13 27 60.6M 231MB
    YOLOv3-50 57.6 56.6 22 48 19.8M 91.7MB
    YOLOv3-80 51.7 52.4 23 50 12.3M 46.6MB
    YOLOv3-95 49.4 46.5 27 57 4.8M 18.7MB
    下载: 导出CSV

    表  2  算法对比表

    Table  2.   Comparison among different algorithms

    算法 平均巴氏距离 单帧平均耗时/s
    传统ASMS算法 0.786 0.0098
    KCF算法 0.795 0.0073
    基于YOLOv3和ASMS算法 0.805 0.0631
    基于YOLOv3-95和ASMS算法 0.803 0.0463
    下载: 导出CSV

    表  3  算法对比表

    Table  3.   Comparison among different algorithms

    算法 平均巴氏距离 单帧平均耗时/s
    行人 动物 小车 行人 动物 小车
    ASMS算法 0.3128 0.2564 0.3397 0.0093 0.0101 0.0104
    KCF算法 0.3275 0.2631 0.3463 0.0078 0.0073 0.0085
    基于YOLOv3和ASMS的算法 0.6965 0.6700 0.7201 0.0626 0.0611 0.0607
    基于YOLOv3-95和ASMS的算法 0.6733 0.6574 0.7196 0.0469 0.0460 0.0473
    VITAL算法 0.7043 0.6852 0.7253 1.6667 1.6823 1.6295
    SANet算法 0.6965 0.6700 0.7201 1.3333 1.3478 1.3256
    下载: 导出CSV
  • [1] 卢湖川, 李佩霞, 王栋. 目标跟踪算法综述[J]. 模式识别与人工智能, 2018, 31(1): 61-76. https://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201801008.htm

    Lu H C, Li P X, Wang D. Visual object tracking: a survey[J]. Pattern Recognit Artif Intell, 2018, 31(1): 61-76. https://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201801008.htm
    [2] 李玺, 查宇飞, 张天柱, 等. 深度学习的目标跟踪算法综述[J]. 中国图象图形学报, 2019, 24(12): 2057-2080. doi: 10.11834/jig.190372

    Li X, Zha Y F, Zhang T Z, et al. Survey of visual object tracking algorithms based on deep learning[J]. J Image Graph, 2019, 24(12): 2057–2080. doi: 10.11834/jig.190372
    [3] 葛宝义, 左宪章, 胡永江. 视觉目标跟踪方法研究综述[J]. 中国图象图形学报, 2018, 23(8): 1091-1107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201808001.htm

    Ge B Y, Zuo X Z, Hu Y J. Review of visual object tracking technology[J]. J Image Graph, 2018, 23(8): 1091–1107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201808001.htm
    [4] Sun D Q, Roth S, Black M J. Secrets of optical flow estimation and their principles[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, 2010: 2432-2439.
    [5] Nummiaro K, Koller-Meier E, Van Gool L. An adaptive color-based particle filter[J]. Image Vis Comput, 2003, 21(1): 99-110. doi: 10.1016/S0262-8856(02)00129-4
    [6] Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift[C]//Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), Hilton Head Island, SC, 2002: 142–149.
    [7] Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Trans Pattern Anal Mach Intell, 2011, 33(8): 1619–1632. doi: 10.1109/TPAMI.2010.226
    [8] Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection[J]. IEEE Trans Pattern Anal Mach Intell, 2012, 34(7): 1409–1422. doi: 10.1109/TPAMI.2011.239
    [9] Avidan S. Support vector tracking[J]. IEEE Trans Pattern Anal Mach Intell, 2004, 26(8): 1064-1072. doi: 10.1109/TPAMI.2004.53
    [10] Vojir T, Noskova J, Matas J. Robust scale-adaptive mean-shift for tracking[C]//Proceedings of the 18th Scandinavian Conference Scandinavian Conference on Image Analysis, Espoo, Finland, 2014: 652–663.
    [11] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014: 580–587.
    [12] Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, Santigago, Chile, 2015: 1440–1448.
    [13] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [14] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 2016: 779–788.
    [15] Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference European Conference on Computer Vision, Amsterdam, 2016: 21–37.
    [16] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. [2020-02-10]. https://pjreddie.com/media/files/papers/YOLOv3.pdf.
    [17] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, 2017: 6517–6525.
    [18] Fu C Y, Liu W, Ranga A, et al. DSSD: deconvolutional single shot detector[EB/OL]. [2020-02-10]. https://arxiv.org/pdf/1701.06659.pdf.
    [19] Li Z X, Zhou F Q. FSSD: feature fusion single shot multibox detector[EB/OL]. [2020-02-10]. https://arxiv.org/pdf/1712.00960.pdf.
    [20] Liu Z, Li J G, Shen Z Q, et al. Learning efficient convolutional networks through network slimming[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2755–2763.
    [21] Chen G B, Choi W, Yu X, et al. Learning efficient object detection models with knowledge distillation[EB/OL]. [2020-02-10] http://papers.nips.cc/paper/6676-learning-efficient-object-detection-models-with-knowledge-distillation.pdf.
    [22] Wu J X, Leng C, Wang Y H, et al. Quantized convolutional neural networks for mobile devices[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 2016: 4820–4828.
    [23] Huang G, Chen D L, Li T H, et al. Multi-scale dense networks for resource efficient image classification[EB/OL]. [2020-02-10] https://arxiv.org/pdf/1703.09844.pdf.
    [24] He M, Zhao H W, Wang G Z, et al. Deep neural network acceleration method based on sparsity[C]//Proceedings of the 15th International Forum International Forum on Digital TV and Wireless Multimedia Communications, Shanghai, China, 2019: 133–145.
    [25] Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(3): 583–596. doi: 10.1109/TPAMI.2014.2345390
    [26] Song Y B, Ma C, Wu X H, et al. VITAL: visual tracking via adversarial learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018: 8990–8999.
    [27] Fan H, Ling H B. SANet: structure-aware network for visual tracking[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, Hl, 2017: 2217–2224.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  196
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 修回日期:  2020-09-24

目录

    /

    返回文章
    返回