留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可调谐手征超表面电磁特性研究进展

王金金 朱邱豪 董建峰

王金金, 朱邱豪, 董建峰. 可调谐手征超表面电磁特性研究进展[J]. 机械工程学报, 2021, 48(2): 200218. doi: 10.12086/oee.2021.200218
引用本文: 王金金, 朱邱豪, 董建峰. 可调谐手征超表面电磁特性研究进展[J]. 机械工程学报, 2021, 48(2): 200218. doi: 10.12086/oee.2021.200218
Wang Jinjin, Zhu Qiuhao, Dong Jianfeng. Research progress of electromagnetic properties of tunable chiral metasurfaces[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200218. doi: 10.12086/oee.2021.200218
Citation: Wang Jinjin, Zhu Qiuhao, Dong Jianfeng. Research progress of electromagnetic properties of tunable chiral metasurfaces[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200218. doi: 10.12086/oee.2021.200218

可调谐手征超表面电磁特性研究进展

doi: 10.12086/oee.2021.200218
基金项目: 

国家自然科学基金资助项目 61475079

详细信息
    作者简介:

    王金金(1995-),女,硕士研究生,主要从事手征超表面的研究。E-mail:13566022263@163.com

    通讯作者:

    董建峰(1964-),男,博士,教授,博士生导师,主要从事负折射率材料、手征介质波导等方面的研究。E-mail:dongjianfeng@nbu.edu.cn

  • 中图分类号: TB34

Research progress of electromagnetic properties of tunable chiral metasurfaces

Funds: 

National Natural Science Foundation of China 61475079

More Information
  • 摘要: 手征超表面是由具有特定电磁响应的平面手征单元结构构成的超薄超材料,由于其具有自由控制电磁波的奇异能力而引起了极大的关注。通过在超表面设计中加入可调谐材料,可以实现其功能受外部激发控制的可调谐或可重构的超器件,为动态调谐电磁波开辟了新的道路。本文介绍了可调/可重构手征超表面电磁特性的一些理论基础,当线偏振光进入可调谐手征超表面时,会被分解为左旋圆偏振(LCP)波和右旋圆偏振(RCP)波,通过外部环境改变介质的介电常数和磁导率,超表面光器件可以动态地控制各种偏振光特别是圆偏振光的响应特性如折射率、二色性、旋光性、不对称传输等。按照可调谐手征超表面所控制的负折射率、圆二色性和旋光性、不对称传输性质,对其最新的研究进展进行了综述。最后,对可调谐手征超表面这一快速发展领域未来可能的发展方向和存在的挑战提出了自己的看法。

     

  • 图  (a) 楔形棱镜的模拟结构[17];(b) 楔形结构在两种不同的频率0.6 THz和1.1 THz处的电场分布;(c) 可调NIMs的单元结构[19];(d) NIMs的负折射

    Figure  1.  (a) The wedge-shaped prism simulation structure[17]; (b) The electric field distributions of the wedge structure at two different frequencies of 0.6 THz and 1.1 THz; (c) Schematic illustration of a unit cellof the tunable NIMs[19]; (d) The negative refraction of the NIMs

    图  (a) 偏置结构石墨烯分裂环谐振器(GSRR)原理图[10];(b) GSRR对TE法向入射波的透射和反射偏振响应的示意图

    Figure  2.  (a) Schematic of graphene split ring resonator (GSRR) with biasing configuration[10]; (b) Transmission and reflection polarization response of the GSRRs for the TE normal incidence wave

    图  (a) 工作原理图[24];(b) θ=φ=45°时非晶态和晶态的CDtran光谱;(c) 主动可调手征的相变超材料[25];(d) 模拟和测量的透射率和CD光谱

    Figure  3.  (a) Schematic of the operation concept[24]; (b) The CDtran spectra for both amorphous and crystalline states under θ=φ=45°; (c) A phase transition metamaterial with actively adjustable chirality[25]; (d) Simulated and measured transmittance and CD spectra

    图  (a) 平面手征匕首状结构热控制原理图[9];(b) 基于VO2的超表面原理图[26];(c) 模拟BSR的CD差异[27]

    Figure  4.  (a) Schematic view of a planar chiral dagger-like structure with thermal control[9]; (b) Schematic view of the VO2 based metasurface[26]; (c) Simulated difference of CD of the BSR[27]

    图  (a) 单元结构[28];(b) CD和OA;(c) 手征超材料的三维示意图[29];(d) 具有不同费米能级的混合结构的CD谱;(e) 石墨烯超表面示意图[33]

    Figure  5.  (a) Illustration of the unit cell[28]; (b) CD and OA; (c) 3D schematic view of the chiral metamaterial[29]; (d) CD spectra of the hybrid structure with different Fermi energies; (e) A schematic illustration of a graphene metasurface[33]

    图  (a) 圆偏振波在直角坐标系中以斜入射方式入射到无图案单层黑磷(BP)膜的示意图[34];(b) 圆二色性光谱;(c) 将CDPL作为手征超表面CDEXT的函数输出;(d) 示意图显示了在不改变激发的CP态情况下,通过MMs耦合操纵PL极化[7];(e) 手征超表面示意图[35];(f) LC集成等离子体手征超表面在开、关条件下的模拟反射和CD光谱

    Figure  6.  (a) Schematic of circularly polarized waves impinge at a film of unpatterned monolayer black phosphorus (BP) at an oblique incidence in a Cartesian coordinate system[34]; (b) Circular dichroism spectra; (c) Output CDPL as a function of the CDEXT of chiral metasurfaces; (d) Schematic diagrams indicate the manipulation of the PL polarization through the coupling to MMs without switching the CP state of the excitation[7]; (e) Schematic of the chiral metasurface[35]; (f) Simulated reflection and CD spectra of the LC-integrated plasmonic chiral metasurface at 'ON' and 'OFF' conditions

    图  (a) 与微流体系统结合的手征超表面示意图[36];(b) 不同折射率混合溶液的CD谱;(c) 手征超表面示意图[39];(d) 在不同折射率的情况下,SCMM-BLT沿x轴拉伸10%的OC光谱

    Figure  7.  (a) Schematic view of the chiral metasurface integrated with a microfluid system[36]; (b) The CD spectrum as a function of the refractive index of the mixed solution; (c) Schematic view of the chiral metasurface[39]; (d) OC spectra of SCMM-BLT stretched along x-axis at the level of 10% with different surrounding refractive indext

    图  (a) 具有G形孔的石墨烯手征超表面[44];(b) 无衬底时相对与总透射的传输差;(c) 石墨烯手征超表面[46];(d) 结构的正反传播方向的圆转换二色性(CCD)光谱示意图;(e) 单层石墨烯平面手征超表面[47];(f) 不同费米能级下非对称透射与波长的关系

    Figure  8.  (a) The graphene chiral metasurface with G-shaped holes[44]; (b) The relative enantiomeric difference in the total transmission without a substrate; (c) Schematic view of the graphene chiral metasurface[46]; (d) Circular conversion dichroism (CCD) spectra of the structure for forward and backward propagation directions; (e) The schematic diagram of the monolayer graphene-based planar chiral metasurface[47]; (f) The relation between the asymmetric transmission and the wavelength under different fermi energies

    图  (a) 混合金属-石墨烯超表面单元示意图[48];(b) 不同费米能级石墨烯的不对称传输参数;(c) 超表面三维视图[52];(d) 不同μc向前传播的CCD光谱;(e) 装置原理图[53];(f) y极化(实线)和x极化波(虚线)的AT参数

    Figure  9.  (a) Schematic diagram of a unit cell of the proposed hybrid metal-graphene metasurface[48]; (b) Asymmetric transmission parameters with different Fermi energies of graphene; (c) Three dimensional view of the metasurface array[52]; (d) CCD spectra of the structure for forward propagation directions with different values of μc; (e) Schematic diagram of the device[53]; (f) AT parameters of y-polarized (solid line) and x-polarized waves (dashed line)

  • [1] Choudhury S M, Wang D, Chaudhuri K, et al. Material platforms for optical metasurfaces[J]. Nanophotonics, 2018, 7(6): 959-987. doi: 10.1515/nanoph-2017-0130
    [2] Chang S Y, Guo X X, Ni X J. Optical metasurfaces: progress and applications[J]. Annu Rev Mater Res, 2018, 48(1): 279-302. doi: 10.1146/annurev-matsci-070616-124220
    [3] Sun S L, He Q, Hao J M, et al. Electromagnetic metasurfaces: physics and applications[J]. Adv Opt Photonics, 2019, 11(2): 380-479. doi: 10.1364/AOP.11.000380
    [4] Rizza C, Falco A D, Scalora M, et al. One-dimensional chirality: strong optical activity in epsilon-near-zero metamaterials[J]. Phys Rev Lett, 2015, 115(5): 057401. doi: 10.1103/PhysRevLett.115.057401
    [5] Fedotov V A, Mladyonov P L, Prosvirnin S L, et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure[J]. Phys Rev Lett, 2006, 97(16): 167401. doi: 10.1103/PhysRevLett.97.167401
    [6] Dong J F, Zhou J F, Koschny T, et al. Bi-layer cross chiral structure with strong optical activity and negative refractive index[J]. Opt Express, 2009, 17(16): 14172-14179. doi: 10.1364/OE.17.014172
    [7] Lin H T, Chang C Y, Cheng P J, et al. Circular dichroism control of tungsten diselenide (WSe2) atomic layers with plasmonic metamolecules[J]. ACS Appl Mater Interfaces, 2018, 10(18): 15996-16004. doi: 10.1021/acsami.8b01472
    [8] Lv T T, Li Y X, Ma H F, et al. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition[J]. Sci Rep, 2016, 6: 23186. doi: 10.1038/srep23186
    [9] Mandal P, Mohan S, Sharma S, et al. Broadband multi-resonant circular dichroism in metal-VO2 hybrid dagger-like plasmonic structure for switching application[J]. Photonics Nanostruct-Fundam Appl, 2019, 37: 100735. doi: 10.1016/j.photonics.2019.100735
    [10] Sorathiya V, Dave V. Numerical study of a high negative refractive index based tunable metamaterial structure by graphene split ring resonator for far infrared frequency[J]. Opt Commun, 2020, 456: 124581. doi: 10.1016/j.optcom.2019.124581
    [11] Zhang F, Pu M B, Li X, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions[J]. Adv Funct Mater, 2017, 27(47): 1704295. doi: 10.1002/adfm.201704295
    [12] Mao L B, Liu K, Zhang S, et al. Extrinsically 2D-chiral metamirror in near-infrared region[J]. ACS Photonics, 2020, 7(2): 375-383. doi: 10.1021/acsphotonics.9b01211
    [13] Wu R Y, Cui T J. Microwave metamaterials: from exotic physics to novel information systems[J]. Front Inform Technol Electron Eng, 2020, 21(1): 4-26. doi: 10.1631/FITEE.1900465
    [14] Plum E, Liu X X, Fedotov V A, et al. Metamaterials: optical activity without chirality[J]. Phys Rev Lett, 2009, 102(11): 113902. doi: 10.1103/PhysRevLett.102.113902
    [15] Zhang S, Fan W J, Panoiu N C, et al. Demonstration of near-infrared negative-index materials[J]. Phys Rev Lett, 2005, 95(13): 137404. doi: 10.1103/PhysRevLett.95.137404
    [16] Cao T, Simpson R E, Cryan M J. Study of tunable negative index metamaterials based on phase-change materials[J]. J Opt Soc Am B, 2013, 30(2): 439-444. doi: 10.1364/JOSAB.30.000439
    [17] Li W L, Meng Q L, Huang R S, et al. Thermally tunable broadband terahertz metamaterials with negative refractive index[J]. Opt Commun, 2018, 412: 85-89. doi: 10.1016/j.optcom.2017.11.076
    [18] Ling F, Zhong Z Q, Huang R S, et al. A broadband tunable terahertz negative refractive index metamaterial[J]. Sci Rep, 2018, 8: 9843. doi: 10.1038/s41598-018-28221-3
    [19] Ling F, Zhong Z Q, Zhang Y, et al. Broadband negative-refractive index terahertz metamaterial with optically tunable equivalent-energy level[J]. Opt Express, 2018, 26(23): 30085-30099. doi: 10.1364/OE.26.030085
    [20] Luo Y B, Zeng Q S, Yan X, et al. A graphene-based tunable negative refractive index metamaterial and its application in dynamic beam-tilting terahertz antenna[J]. Microw Opt Technol Lett, 2019, 61(12): 2766-2772. doi: 10.1002/mop.31970
    [21] Iwai A, Righetti F, Wang B, et al. A tunable double negative device consisting of a plasma array and a negative-permeability metamaterial[J]. Phys Plasmas, 2020, 27(2): 023511. doi: 10.1063/1.5112077
    [22] Huang Y J, Xie X, Pu M B, et al. Dual-functional metasurface toward giant linear and circular dichroism[J]. Adv Opt Mater, 2020, 8(11): 1902061. doi: 10.1002/adom.201902061
    [23] Cao T, Zhang L, Simpson R E, et al. Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials[J]. Opt Express, 2013, 21(23): 27841-27851. doi: 10.1364/OE.21.027841
    [24] Cao T, Li Y, Wei C W, et al. Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials[J]. Opt Express, 2017, 25(9): 9911-9925. doi: 10.1364/OE.25.009911
    [25] Yin X H, Schäferling M, Michel A K U, et al. Active chiral plasmonics[J]. Nano Lett, 2015, 15(7): 4255-4260. doi: 10.1021/nl5042325
    [26] Gao F, Zhu J W, Ma H F, et al. Tunable circular dichroism of chiral metamaterial based on phase transition of vanadium dioxide (VO2)[J]. Mater Res Express, 2020, 7(4): 045802. doi: 10.1088/2053-1591/ab89de
    [27] Wang T K, Wang Y K, Luo L N, et al. Tunable circular dichroism of achiral graphene plasmonic structures[J]. Plasmonics, 2017, 12(3): 829-833. doi: 10.1007/s11468-016-0331-1
    [28] Kim T T, Oh S S, Kim H D, et al. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials[J]. Sci Adv, 2017, 3(9): e1701377. doi: 10.1126/sciadv.1701377
    [29] Huang Z, Yao K, Su G X, et al. Graphene-metal hybrid metamaterials for strong and tunable circular dichroism generation[J]. Opt Lett, 2018, 43(11): 2636-2639. doi: 10.1364/OL.43.002636
    [30] Vila M, Hung N T, Roche S, et al. Tunable circular dichroism and valley polarization in the modified Haldane model[J]. Phys Rev B, 2019, 99(16): 161404. doi: 10.1103/PhysRevB.99.161404
    [31] Zhou S E, Lai P T, Dong G H, et al. Tunable chiroptical response of graphene achiral metamaterials in mid-infrared regime[J]. Opt Express, 2019, 27(11): 15359-15367. doi: 10.1364/OE.27.015359
    [32] Yao Z F, Lu M J, Zhang C Y, et al. Dynamically tunable and transmissive linear to circular polarizer based on graphene metasurfaces[J]. J Opt Soc Am B, 2019, 36(12): 3302-3306. doi: 10.1364/JOSAB.36.003302
    [33] Amin M, Siddiqui O, Farhat M. Linear and circular dichroism in graphene-based reflectors for polarization control[J]. Phys Rev Appl, 2020, 13(2): 024046. doi: 10.1103/PhysRevApplied.13.024046
    [34] Hong Q L, Xu W, Zhang J F, et al. Optical activity in monolayer black phosphorus due to extrinsic chirality[J]. Opt Lett, 2019, 44(7): 1774-1777. doi: 10.1364/OL.44.001774
    [35] Yin S T, Ji W, Xiao D, et al. Intrinsically or extrinsically reconfigurable chirality in plasmonic chiral metasurfaces[J]. Opt Commun, 2019, 448: 10-14. doi: 10.1016/j.optcom.2019.05.006
    [36] Peng R H, Liu J X, Xiao D, et al. Microfluid-enabled fine tuning of circular dichroism from chiral metasurfaces[J]. J Phys D: Appl Phys, 2019, 52(41): 415102. doi: 10.1088/1361-6463/ab3129
    [37] Jing L Q, Wang Z J, Zheng B, et al. Kirigami metamaterials for reconfigurable toroidal circular dichroism[J]. NPG Asia Mater, 2018, 10(9): 888-898. doi: 10.1038/s41427-018-0082-x
    [38] Liu Z G, Xu Y, Ji C Y, et al. Fano-enhanced circular dichroism in deformable stereo metasurfaces[J]. Adv Mater, 2020, 32(8): 1907077. doi: 10.1002/adma.201907077
    [39] Zhou L, Wang Y K, Zhou J X, et al. Tunable circular dichroism of stretchable chiral metamaterial[J]. Appl Phys Express, 2020, 13(4): 042008. doi: 10.35848/1882-0786/ab8054
    [40] Zanotto S, Blancato A, Buchheit A, et al. Metasurface reconfiguration through lithium-ion intercalation in a transition metal oxide[J]. Adv Opt Mater, 2017, 5(2): 1600732. doi: 10.1002/adom.201600732
    [41] Qu Y, Zhang Z D, Fu T, et al. Dielectric tuned circular dichroism of L-shaped plasmonic metasurface[J]. J Phys D: Appl Phys, 2017, 50(50): 504001. doi: 10.1088/1361-6463/aa95f6
    [42] Hu J P, Zhao X N, Lin Y, et al. All-dielectric metasurface circular dichroism waveplate[J]. Sci Rep, 2017, 7: 41893. doi: 10.1038/srep41893
    [43] Cao T, Wei C W, Mao L B. Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism[J]. Sci Rep, 2015, 5: 14666. doi: 10.1038/srep14666
    [44] Zhao J Y, Zhang J F, Zhu Z H, et al. Tunable asymmetric transmission of THz wave through a graphene chiral metasurface[J]. J Opt, 2016, 18(9): 095001. doi: 10.1088/2040-8978/18/9/095001
    [45] Jiang H, Zhao W Y, Jiang Y Y. High-efficiency tunable circular asymmetric transmission using dielectric metasurface integrated with graphene sheet[J]. Opt Express, 2017, 25(17): 19732-19739. doi: 10.1364/OE.25.019732
    [46] Shokati E, Asgari S, Granpayeh N. Dual-band polarization-sensitive graphene chiral metasurface and its application as a refractive index sensor[J]. IEEE Sens J, 2019, 19(21): 9991-9996. doi: 10.1109/JSEN.2019.2925963
    [47] Zhou J X, Wang Y K, Lu M J, et al. Giant enhancement of tunable asymmetric transmission for circularly polarized waves in a double-layer graphene chiral metasurface[J]. RSC Adv, 2019, 9(58): 33775-33780. doi: 10.1039/C9RA05760A
    [48] Zhao J X, Song J L, Xu T Y, et al. Controllable linear asymmetric transmission and perfect polarization conversion in a terahertz hybrid metal-graphene metasurface[J]. Opt Express, 2019, 27(7): 9773-9781. doi: 10.1364/OE.27.009773
    [49] Song Q H, Wu P C, Zhu W M, et al. Split archimedean spiral metasurface for controllable GHz asymmetric transmission[J]. Appl Phys Lett, 2019, 114(15): 151105. doi: 10.1063/1.5084329
    [50] Hajian H, Ghobadi A, Serebryannikov A E, et al. VO2-hBN-graphene-based bi-functional metamaterial for mid-infrared bi-tunable asymmetric transmission and nearly perfect resonant absorption[J]. J Opt Soc Am B, 2019, 36(6): 1607-1615. doi: 10.1364/JOSAB.36.001607
    [51] Hajian H, Ghobadi A, Serebryannikov A E, et al. Tunable infrared asymmetric light transmission and absorption via graphene-hBN metamaterials[J]. J Appl Phys, 2019, 126(19): 193102. doi: 10.1063/1.5118887
    [52] Asgari S, Rahmanzadeh M. Tunable circular conversion dichroism and asymmetric transmission of terahertz graphene metasurface composed of split rings[J]. Opt Commun, 2020, 456: 124623. doi: 10.1016/j.optcom.2019.124623
    [53] Li T, Hu F R, Qian Y X, et al. Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave[J]. Chin Phys B, 2020, 29(2): 024203. doi: 10.1088/1674-1056/ab5ef8
  • 加载中
图(9)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  302
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-12
  • 修回日期:  2020-08-06

目录

    /

    返回文章
    返回