-
摘要: 为了减少屈光度测量误差,提高精度。本文针对哈特曼法焦度测量建立了较详细的误差模型,着重分析了光源的色散误差、入射光与透镜未垂直、光电探测器中心定位不准、透镜倾斜、光源光线主轴与透镜主轴未重合所引起的屈光度测量误差。结果表明,得出由于光电探测器上中心提取的不准确,会对最终的结果产生较大的误差。并由此提出了双重双线性插值结合拟合法来求取中心的方法,并证明了其有效性和准确性。Abstract: In order to reduce the error and improve the measurement accuracy, a more detailed error model is established for the Hartmann method of focal power measurement in this paper. It focuses on the analysis of several problems that cause the error of refraction problems, including the dispersion error of the light source, the inaccurate of the photodetector's central positing, the tilt of lens, misalignment between incidence axis and main axis of lens, and the incident light and the lens are not perpendicular. At last, it is concluded that the inaccuracy of the center extraction on the photodetector will cause a large error to the final result. For all these reasons, a method of dual bilinear interpolation combined with a fitting method to find the centroid is proposed, proving its effectiveness and accuracy.
-
Key words:
- Hartmann diaphragm /
- focimeter /
- error model /
- image processing /
- centroid calculation
-
表 1 中心坐标及误差
Table 1. The results for centroid coordinates and error
插值位置间距 中心坐标 中心定位误差di 0.35 (59.681,59.655) 0.471 0.3 (59.892,59.857) 0.180 0.25 (59.878,59.860) 0.186 0.2 (59.877,59.841) 0.201 0.15 (59.969,59.967) 0.045 0.1 (59.928,59.887) 0.134 0.05 (59.890,59.854) 0.183 -
[1] Mumzhiu A M, Strakun G I. Investigation of an automatic lensometer[J]. Meas Tech, 1972, 15(4): 538-541. doi: 10.1007/BF00823265 [2] Cordero I. Understanding and caring for a lensmeter[J]. Comm Eye Health J, 2016, 29(94): 37. http://pubmedcentralcanada.ca/pmcc/articles/PMC5100475/ [3] Barbosa E A, Silva D M, Nascimento C E, et al. Progressive power lens measurement by low coherence speckle interferometry[J]. Opt Lasers Eng, 2013, 51(7): 898-906. doi: 10.1016/j.optlaseng.2013.02.007 [4] Aono Y, Negishi M, Takano J. Development of large aperture spherical lens with glass molding[J]. Proc SPIE, 2000, 4231: 16-23. doi: 10.1117/12.402759 [5] Fu X H, Dong H, Jia Z H, et al. Research on processing technology of odd-form off-axis aspherical lens[J]. Proc SPIE, 2014, 9281: 92812F. doi: 10.1117/12.2068113 [6] Ceyhan U, Henning T, Fleischmann F, et al. Measurements of aberrations of aspherical lenses using experimental ray tracing[J]. Proc SPIE, 2011, 8082: 80821K-1. http://www.spie.org/x648.xml?product_id=895009 [7] 杨并上, 廖海洋, 王涵. 数字投影式焦度计误差分析及校正方法[J]. 光学精密工程, 2004, 12(S1): 136-139.Yang B S, Liao H Y, Wang H. Error analysis and correction of digital projection focimeter[J]. Opt Precision Eng, 2004, 12(S1): 136-139. [8] 朱林泉, 朱苏磊. 焦度计的测量误差和校正方法[J]. 仪器仪表学报, 2006, 27(S2): 1284-1285. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2006S2107.htmZhu L Q, Zhu S L. Measuring error and correcting method of the dioptometer[J]. Chin J Sci Instrum, 2006, 27(S2): 1284-1285. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2006S2107.htm [9] 赵俊奇, 郭智勇, 闫洁. 一种图像处理的全自动焦度计[J]. 光电工程, 2012, 39(3): 34-39. doi: 10.3969/j.issn.1003-501X.2012.03.007Zhao J Q, Guo Z Y, Yan J. An image processing auto lensmeter[J]. Opto-Electron Eng, 2012, 39(3): 34-39. doi: 10.3969/j.issn.1003-501X.2012.03.007 [10] 沈春花. 浅谈色散对焦度计检测的影响[J]. 北京生物医学工程, 2010, 29(5): 534-537. doi: 10.3969/j.issn.1002-3208.2010.05.22.Shen C H. Briefing the influence of dispersion on detecting lensmeter[J]. Beijing Biomed Eng, 2010, 29(5): 534-537. doi: 10.3969/j.issn.1002-3208.2010.05.22. [11] Snoeys W. Monolithic CMOS sensors for high energy physics[J]. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip, 2019, 924: 51-58. doi: 10.1016/j.nima.2018.06.034 [12] Mahato S B, de Ridder J, Meynants G, et al. Measuring intra-pixel sensitivity variations of a CMOS image sensor[J]. IEEE Sens J, 2018, 18(7): 2722-2728. doi: 10.1109/JSEN.2018.2798698 [13] Song W T, Cheng J J, Liu Y, et al. Three-dimensional image authentication using binarized images in double random phase integral imaging[J]. Chin Opt Lett, 2019, 17(5): 21-25. http://www.cqvip.com/QK/85954X/20195/7002260960.html [14] Roy S, Bhattacharyya D, Bandyopadhyay S K, et al. An improved brain MR image binarization method as a preprocessing for abnormality detection and features extraction[J]. Front Comp Sci, 2017, 11(4): 717-727. doi: 10.1007/s11704-016-5129-y [15] Cheng M M, Liu Y, Lin W Y, et al. BING: Binarized normed gradients for objectness estimation at 300fps[J]. Comput Vis Med, 2019, 5(1): 3-20. doi: 10.1007/s41095-018-0120-1