留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双模LPFG折射率不敏感双参量传感器

王向宇 乔学光 禹大宽

王向宇, 乔学光, 禹大宽. 基于双模LPFG折射率不敏感双参量传感器[J]. 机械工程学报, 2021, 48(3): 200247. doi: 10.12086/oee.2021.200247
引用本文: 王向宇, 乔学光, 禹大宽. 基于双模LPFG折射率不敏感双参量传感器[J]. 机械工程学报, 2021, 48(3): 200247. doi: 10.12086/oee.2021.200247
Wang Xiangyu, Qiao Xueguang, Yu Dakuan. Refractive index insensitive two parameter sensor based on dual mode LPEG[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(3): 200247. doi: 10.12086/oee.2021.200247
Citation: Wang Xiangyu, Qiao Xueguang, Yu Dakuan. Refractive index insensitive two parameter sensor based on dual mode LPEG[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(3): 200247. doi: 10.12086/oee.2021.200247

基于双模LPFG折射率不敏感双参量传感器

doi: 10.12086/oee.2021.200247
基金项目: 

国家科技攻关资助项目 61327012

国家自然科学基金资助项目 61735014

国家重大科研仪器研制资助项目 61927812

国家重点研究发展计划 2017YFB0405502

详细信息
    作者简介:

    王向宇(1977-),男,博士研究生,讲师,主要从事光纤传感与应用的研究。E-mail: wxy@xsyu.edu.cn

    通讯作者:

    乔学光(1955-),男,博导,教授,主要从事光纤传感与应用的研究。E-mail: xgqiao@nwu.edu.cn

  • 中图分类号: TN253

Refractive index insensitive two parameter sensor based on dual mode LPEG

Funds: 

National Programs for Science and Technology Development 61327012

National Natural Sciene Foundation of China 61735014

National Key Scientific Instrument and Equipment Development Project 61927812

National Key Research and Development Plan 2017YFB0405502

More Information
  • 摘要: 环境折射率和环境温度变化是影响光纤应变测量误差的主要因素。本文利用双模光纤纤芯双模式(LP01和LP11)支持特性设计了一款环境折射率不敏感的双模光纤(DMF)长周期光纤光栅LPFG)应变传感器。设计了传感器模型结构,制作了最优化参数的传感器样品。实验测试了DMF-LPFG传感结构对外部环境中应变、温度和折射率的响应。通过在单模光纤上用紫外激光刻写的布拉格光栅(FBG)解决了环境温度的交叉影响。轴向应变实验结果表明,该新型结构传感器在0 με~840 με应变范围内其轴向应变灵敏度可以达到-5.4 pm/με,该灵敏度值相比较于普通LPFG有很大提高。温度在25 ℃~80 ℃范围内其灵敏度为58.86 pm/℃,表现出较好的线性度。同时,传感器对环境折射率变化表现出不敏感特性。通过采用双参数矩阵对少模LPFG和FBG的应变和温度灵敏度进行处理,可以实现双参数的同时解调。该新型复合光栅结构具有良好的传感性能和工程应用前景。

     

  • 图  (a) 传感器结构;(b) 激光经过单模-少模后测量的场分布;(c) 激光经过单模-少模-LPFG后测量的场分布;(d), (e) 激光经过单模-少模-LPFG-偏振片后测量的场分布;(f) LPFG的显微镜图像

    Figure  1.  (a) The structure of the proposed sensor; (b) The measured field distribution emitted from the DMF without the LPFG; (c) The measured field distribution emitted from the DMF-LPFG; (d), (e) The measured field distribution after passing through the LPFG-polarizer; (f) Microscopic image of the LPFG

    图  DMF-LPFG写制的实验装置

    Figure  2.  Experimental writing device of the DMF-LPFG

    图  DMF-LPFG的透射光谱

    Figure  3.  Transmission spectrum of the DMF-LPFG

    图  应变测量装置

    Figure  4.  The strain measurement set-up

    图  应变测量实验数据。(a) 光谱随应变漂移;(b) 应变灵敏度拟合

    Figure  5.  Experimental data of strain measurement. (a) Spectrum drift with strain; (b) Sensitivity fitting of strain

    图  温度测量实验数据。(a) 光谱随温度漂移;(b) 温度灵敏度拟合

    Figure  6.  Experimental data of temperature measurement. (a) Spectral drift with temperature; (b) Sensitivity fitting of temperature

    图  折射率测量实验数据

    Figure  7.  Experimental data of refractive index measurement

  • [1] Vengsarkar A M, Lemaire P J, Judkins J B, et al. Long-period fiber gratings as band-rejection filters[J]. J Lightwave Technol, 1996, 14(1): 58-65. doi: 10.1109/50.476137
    [2] James S W, Tatam R P. Optical fibre long-period grating sensors: characteristics and application[J]. Meas Sci Technol, 2003, 14(5): R49-R61. doi: 10.1088/0957-0233/14/5/201
    [3] Liao C R, Wang Y, Wang D N, et al. Femtosecond laser inscribed long-period gratings in all-solid photonic bandgap fibers[J]. IEEE Photonics Technol Lett, 2010, 22(6): 425-427. doi: 10.1109/LPT.2010.2040824
    [4] Martinez-Rios A, Monzon-Hernandez D, Torres-Gomez I. Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing[J]. Opt Commun, 2010, 283(6): 958-962. doi: 10.1016/j.optcom.2009.10.108
    [5] Bai Z Y, Zhang W G, Gao S C, et al. Compact long period fiber grating based on periodic micro-core-offset[J]. J Lightwave Technol, 2013, 25(21): 2111-2114. http://ieeexplore.ieee.org/document/6600759/references
    [6] Rego G, Okhotnikov O, Dianov E, et al. High-temperature stability of long-period fiber gratings produced using an electric arc[J]. J Lightwave Technol, 2001, 19(10): 1574-1579. doi: 10.1109/50.956145
    [7] 蒋友华, 傅海威, 张静乐, 等. 基于多芯光纤级联布喇格光纤光栅的横向压力与温度同时测量[J]. 光子学报, 2017, 46(1): 0106002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201701017.htm

    Jiang Y H, Fu H W, Zhang J L, et al. Simultaneous measurement of transverse pressure and temperature based on multi-core fiber cascaded with fiber Bragg grating[J]. Acta Photonica Sin, 2017, 46(1): 0106002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201701017.htm
    [8] Chu J L, Shen C Y, Feng Q, et al. Simultaneous measurement of strain and temperature based on a long-period grating with a polarization maintaining fiber in a loop mirror[J]. Opt Fiber Technol, 2014, 20(1): 44-47. doi: 10.1016/j.yofte.2013.11.009
    [9] Yang M W, Wang D N, Wang Y, et al. Long period fiber grating formed by periodically structured microholes in all-solid photonic bandgap fiber[J]. Opt Express, 2010, 18(3): 2183-2189. doi: 10.1364/OE.18.002183
    [10] 刘强, 毕卫红, 付兴虎, 等. 基于少模光纤长周期光栅叠栅的折射率传感特性[J]. 光子学报, 2018, 47(1): 0106001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201801014.htm

    Liu Q, Bi W H, Fu X H, et al. Refractive index sensing characteristic of superimposed long period gratings on few mode fiber[J]. Acta Photonica Sin, 2018, 47(1): 0106001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201801014.htm
  • 加载中
图(7)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  158
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-04
  • 修回日期:  2020-10-19

目录

    /

    返回文章
    返回