留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布式光纤入侵信号检测与识别

张永康 尚盈 王晨 赵文安 李常 曹冰 王昌

张永康, 尚盈, 王晨, 赵文安, 李常, 曹冰, 王昌. 分布式光纤入侵信号检测与识别[J]. 机械工程学报, 2021, 48(3): 200254. doi: 10.12086/oee.2021.200254
引用本文: 张永康, 尚盈, 王晨, 赵文安, 李常, 曹冰, 王昌. 分布式光纤入侵信号检测与识别[J]. 机械工程学报, 2021, 48(3): 200254. doi: 10.12086/oee.2021.200254
Zhang Yongkang, Shang Ying, Wang Chen, Zhao Wen′an, Li Chang, Cao Bing, Wang Chang. Detection and recognition of distributed optical fiber intrusion signal[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(3): 200254. doi: 10.12086/oee.2021.200254
Citation: Zhang Yongkang, Shang Ying, Wang Chen, Zhao Wen′an, Li Chang, Cao Bing, Wang Chang. Detection and recognition of distributed optical fiber intrusion signal[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(3): 200254. doi: 10.12086/oee.2021.200254

分布式光纤入侵信号检测与识别

doi: 10.12086/oee.2021.200254
基金项目: 

山东省自然科学基金资助项目 ZR2019QF011

山东省重大科技创新工程项目 2019JZZY010113

山东省重点研发计划 2019GSF111065

山东省高等学校青创科技支持计划 2019KJJ004

详细信息
    作者简介:

    张永康(1997-),男,硕士研究生,主要从事分布式光纤传感技术方面的研究。E-mail: ooozyk@163.com

    通讯作者:

    王昌(1977-),男,博士,研究员,主要从事智能材料与光纤传感技术方面的研究。E-mail: ch_wangs@163.com

  • 中图分类号: TN29

Detection and recognition of distributed optical fiber intrusion signal

Funds: 

Natural Science Foundation of Shandong Province ZR2019QF011

Science and Technology Innovation Project of Shandong Province - Major Special 2019JZZY010113

Key R & D Program of Shandong Province 2019GSF111065

the Youth Innovation Science and Technology Program of Colleges in Shandong Province 2019KJJ004

More Information
  • 摘要: 分布式光纤声波传感(DAS)技术通过接收相干瑞利散射光的相位信息来探测声波或振动信号,具有灵敏度高、动态范围广等特性,可利用线性定量测量实现对信号的高保真还原。随着实际应用的需求不断提高,光纤入侵检测领域对事件的定位和识别提出了更高的要求,表现为对入侵事件的准确分类,因此将分布式光纤声波传感技术与模式识别(PR)技术相结合是目前研究的热门,有利于推动分布式光纤传感技术的应用发展。本文总结了近年来在分布式光纤入侵检测的模式识别技术中所应用的特征提取和分类算法的研究进展,回顾了几种实现入侵事件信号识别的特征提取方法及其在不同应用场合面临的特征选择难点,同时对特定事件识别算法的优劣进行分析归纳。

     

  • 图  DAS系统结构

    Figure  1.  DAS system structure

    图  入侵信号识别流程

    Figure  2.  Intrusion signal recognition process

    图  暴雨期间攀爬事件监测信号。

    (a) 时域信号;(b) LC值[12]

    Figure  3.  Signal representing a climb during torrential rain as detected. (a) Time domain representations; (b) LC vs. block number[12]

    图  5种事件原始信号。(a) 剪切;(b) 晃动;(c) 攀爬;(d) 敲击;(e) 无入侵[18]

    Figure  4.  Original signals of five events. (a) Cutting; (b) Waggling; (c) Climbing; (d) Knocking; (e) No intrusion[18]

    图  5种事件分段过零率。(a) 剪切;(b) 晃动;(c) 攀爬;(d) 敲击;(e) 无入侵[18]

    Figure  5.  Segment zero-crossing rates of five events. (a) Cutting; (b) Waggling; (c) Climbing; (d) Knocking; (e) No intrusion[18]

    图  FFT特征提取流程图

    Figure  6.  FFT feature extraction flow chart

    图  MFCC特征提取流程图

    Figure  7.  MFCC feature extraction flow chart

    图  两种窗函数处理4种入侵事件的STFT图。(a),(c),(e),(g) 敲击、摇晃、刮风、下雨经过汉宁窗处理后的时频图;(b),(d),(f),(h) 敲击、摇晃、刮风、下雨经过凯塞窗处理后的时频图[27]

    Figure  8.  STFT time-frequency diagrams of two kinds of window functions for processing four intrusion events. (a), (c), (e), (g) Time-frequency diagrams of knocking, shaking, winding, and raining signals after passing through the Hanning window; (b), (d), (f), (h) time-frequency diagrams of knocking, shaking, winding, and raining signals after passing through the Kaiser window[27]

    图  4种入侵信号及其IMF分量。(a) 爬网; (b) 敲击; (c) 晃动; (d) 切割[29]

    Figure  9.  Fence invasive signals and their IMF components through EMD. (a) EMD of climbing; (b) EMD of knocking; (c) EMD of waggling; (d) EMD of cutting[29]

    图  10  4种入侵信号及其峰值特征向量。(a) 爬网; (b) 敲击; (c) 爬网特征向量; (d) 敲击特征向量; (e) 晃动; (f) 切割; (g) 晃动特征向量; (h) 切割特征向量

    Figure  10.  Signals and their kurtosis eigenvectors of four cases. (a) Climbing signal; (b) Knocking signal; (c) Eigenvectors of climbing; (d) Eigenvectors of knocking; (e) Waggling signal; (f) Cutting signal; (g) Eigenvectors of waggling; (h) Eigenvectors of cutting

    图  11  多尺度分解树。(a) 小波分解;(b) 小波包分解

    Figure  11.  Multi-scale decomposition tree. (a) Wavelet decomposition; (b) Wavelet packet decomposition

    图  12  三种事件WE分布[38]

    Figure  12.  WE distribution for three typical events[38]

    图  13  三种事件WPE分布[38]

    Figure  13.  WPE distribution for three typical events[38]

    图  14  (a) 车辆经过仿真信号;(b) 车辆经过实验信号[40]

    Figure  14.  (a) Calculated signal of vehicle passing; (b) Experimentally measured signal of vehicle passing[40]

    图  15  DBSCAN算法的核心点和边缘点[41]

    Figure  15.  DBSCAN core and outlier points[41]

    图  16  有向无环图RVM

    Figure  16.  Directed acyclic graph of RVM[49]

    图  17  三类事件特征分布[40]

    Figure  17.  Feature distribution of three events[40]

    图  18  三层BP神经网络结构

    Figure  18.  Three-layer BP neural network structure

    图  19  卷积神经网络典型结构

    Figure  19.  Typical structure of CNN

    图  20  谱减法后的振动信号。(a) 去噪后敲击信号;(b) 去噪后敲击信号频谱分布[55]

    Figure  20.  The effect of spectral subtraction on the vibration signal. (a) The time-domain waveform of the knocking signal after noise reduction; (b) The spectrogram of the knocking signal after noise reduction[55]

    图  21  优化后的CNN网络结构(红色方块表示卷积运算,蓝色方块表示池化运算)[56]

    Figure  21.  The optimized network structure (the red cube denotes convolution operation and the blue cube denotes pooling operation)[56]

    图  22  5类事件混淆矩阵[56]

    Figure  22.  Confusion matrix of five events' classification[56]

    图  23  生成对抗网络流程图

    Figure  23.  GAN flow chart

    图  24  不同训练算法测试集的准确率和损失值[61]

    Figure  24.  Accuracy and loss of testing datasets at different training algorithms[61]

    图  25  LSTM网络的循环单元结构

    Figure  25.  Cyclic unit structure of LSTM network

    表  1  DAS模式识别技术发展历程

    Table  1.   The development of DAS pattern recognition technology number

    TimeResearchersFeature extractionClassification algorithmRecognition rate/%
    1IEEE, 2009Qi, et al.FFT+PSDPCA+SVM88.9
    2IEEE, 2010Mahmoud, et al.LCANN
    3APS, 2014Wu, et alSSABP>90
    4ACPC, 2015Cao, et alFFTSVM92.62
    5JLT, 2015Wu, et alWDBP89.19
    6JLT, 2015Liu, et alEMDRBF85.75
    7Sensors, 2015Sun, et alMFERVM+GPU97.8
    8JLT, 2016Tejedor, et alSTFTGMM>55
    9PS, 2017Wu, et alWPDANN94.4
    10ISOP, 2017Aktas.M, et al.STFT2-D CNN>93
    11ICOFS, 2018Shiloh, et al.RGBGAN94
    12JLT, 2019Wei, et alCFARSCN94.67
    13JLT, 2019Wu, et alWPD1-D CNN+SVM96.59
    14OE, 2019Wang, et alRGBDPN+GPU97
    15MOTL, 2020Chen, et alSTE+ZCR+MFCCALSTM94.3
    16OE, 2020Li, et alSTWConvLSTM85.6
    下载: 导出CSV
  • [1] Juarez J C, Maier E W, Choi K N, et al. Distributed fiber-optic intrusion sensor system[J]. J Light Technol, 2005, 23(6): 2081-2087. doi: 10.1109/JLT.2005.849924
    [2] Pan Z Q, Liang K Z, Ye Q, et al. Phase-sensitive OTDR system based on digital coherent detection[J]. Proc SPIE, 2011, 8311: 83110S. doi: 10.1117/12.905657
    [3] Juarez J C, Taylor H F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters[J]. Appl Opt, 2007, 46(11): 1968-1971. doi: 10.1364/AO.46.001968
    [4] Lindsey N J, Martin E R, Dreger D S, et al. Fiber‐optic network observations of earthquake wavefields[J]. Geophys Res Lett, 2017, 44(23): 11792-11799. doi: 10.1002/2017GL075722
    [5] Cedilnik G, Hunt R, Lees G. Advances in train and rail monitoring with DAS[C]//Proceedings of the 26th International Conference on Optical Fiber Sensors, 2018: ThE35.
    [6] Wu H J, Chen J P, Liu X R, et al. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS[J]. J Light Technol, 2019, 37(17): 4359-4366. doi: 10.1109/JLT.2019.2923839
    [7] Johannessen K, Drakeley B, Farhadiroushan M. Distributed acoustic sensing-a new way of listening to your well/reservoir[C]//SPE Intelligent Energy International, Utrecht, the Netherlands, 2012: 149602.
    [8] Bao X Y, Zhou D P, Baker C, et al. Recent development in the distributed fiber optic acoustic and ultrasonic detection[J]. J Light Technol, 2017, 35(16): 3256-3267. doi: 10.1109/JLT.2016.2612060
    [9] Muanenda Y. Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry[J]. J Sens, 2018, 2018: 3897873. http://www.researchgate.net/publication/325124962_Recent_Advances_in_Distributed_Acoustic_Sensing_Based_on_Phase-Sensitive_Optical_Time_Domain_Reflectometry
    [10] Adeel M, Shang C, Zhu K, et al. Nuisance alarm reduction: using a correlation based algorithm above differential signals in direct detected phase-OTDR systems[J]. Opt Express, 2019, 27(5): 7685-7698. doi: 10.1364/OE.27.007685
    [11] 饶云江, 吴敏, 冉曾令, 等. 基于准分布式FBG传感器的光纤入侵报警系统[J]. 传感技术学报, 2007, 20(5): 998-1002. doi: 10.3969/j.issn.1004-1699.2007.05.011

    Rao Y J, Wu M, Ran Z L, et al. A fiber-optic intrusion alarm system based on quasi-distributed FBG sensors[J]. Chin J Sens Actuators, 2007, 20(5): 998-1002. doi: 10.3969/j.issn.1004-1699.2007.05.011
    [12] Mahmoud S S, Katsifolis J. Elimination of rain-induced nuisance alarms in distributed fiber optic perimeter intrusion detection systems[J]. Proc SPIE, 2009, 7316: 731604. doi: 10.1117/12.818096
    [13] 吴红艳, 贾波, 卞庞. 光纤周界安防系统端点检测技术的研究[J]. 仪器仪表学报, 2013, 34(4): 743-748. doi: 10.3969/j.issn.0254-3087.2013.04.004

    Wu H Y, Jia B, Bian P. Study on endpoint detection technology based on fiber perimeter security system[J]. Chin J Sci Instrum, 2013, 34(4): 743-748. doi: 10.3969/j.issn.0254-3087.2013.04.004
    [14] 王思远, 娄淑琴, 梁生, 等. M-Z干涉仪型光纤分布式扰动传感系统模式识别方法[J]. 红外与激光工程, 2014, 43(8): 2613-2618. doi: 10.3969/j.issn.1007-2276.2014.08.036

    Wang S Y, Lou S Q, Liang S, et al. Pattern recognition method of fiber distributed disturbance sensing system based on M-Z interferometer[J]. Infrared Laser Eng, 2014, 43(8): 2613-2618. doi: 10.3969/j.issn.1007-2276.2014.08.036
    [15] 刘琨, 何畅, 刘铁根, 等. 一种用于光纤周界安防系统的端点检测方法[J]. 光电子·激光, 2014, 25(11): 2136-2140. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201411014.htm

    Liu K, He C, Liu T G, et al. An endpoint detection method for fiber perimeter security system[J]. J Opto Laser, 2014, 25(11): 2136-2140. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201411014.htm
    [16] 朱程辉, 瞿永中, 王建平. 基于时频特征的光纤周界振动信号识别[J]. 光电工程, 2014, 41(1): 16-22. doi: 10.3969/j.issn.1003-501X.2014.01.004

    Zhu C H, Qu Y Z, Wang J P. The vibration signal recognition of optical fiber perimeter based on time-frequency features[J]. Opto-Electron Eng, 2014, 41(1): 16-22. doi: 10.3969/j.issn.1003-501X.2014.01.004
    [17] 王建平, 郝钊, 朱程辉. 基于相空间重构的光纤周界信号识别算法研究[J]. 合肥工业大学学报(自然科学版), 2017, 40(5): 643-648. doi: 10.3969/j.issn.1003-5060.2017.05.014

    Wang J P, Hao Z, Zhu C H. Research on vibration signal recognition of optical fiber perimeter based on phase space reconstruction[J]. J Hefei Univ Technol (Nat Sci), 2017, 40(5): 643-648. doi: 10.3969/j.issn.1003-5060.2017.05.014
    [18] 刘琨, 翁凌锋, 江俊峰, 等. 基于过零率的光纤周界安防系统入侵事件高效识别[J]. 光学学报, 2019, 39(11): 1106002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201911009.htm

    Liu K, Weng L F, Jiang J F, et al. Zero-crossing rate based efficient identification of intrusion events in fiber perimeter security systems[J]. Acta Opt Sin, 2019, 39(11): 1106002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201911009.htm
    [19] 王照勇, 潘政清, 叶青, 等. 用于光纤围栏入侵告警的频谱分析快速模式识别[J]. 中国激光, 2015, 42(4): 0405010. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201504024.htm

    Wang Z Y, Pan Z Q, Ye Q, et al. Fast pattern recognition based on frequency spectrum analysis used for intrusion alarming in optical fiber fence[J]. Chin J Lasers, 2015, 42(4): 0405010. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201504024.htm
    [20] Cao C, Fan X Y, Liu Q W, et al. Practical pattern recognition system for distributed optical fiber intrusion monitoring system based on phase-sensitive coherent OTDR[C]//Asia Communications and Photonics Conference 2015, 2015: ASu2A. 145.
    [21] 黄翔东, 张皓杰, 刘琨, 等. 基于综合特征的光纤周界安防系统高效入侵事件识别[J]. 物理学报, 2017, 66(12): 124206. doi: 10.7498/aps.66.124206

    Huang X D, Zhang H J, Liu K, et al. High-efficiency intrusion recognition by using synthesized features in optical fiber perimeter security system[J]. Acta Phys Sin, 2017, 66(12): 124206. doi: 10.7498/aps.66.124206
    [22] 邹东伯, 刘海, 赵亮, 等. 分布式光纤振动传感信号识别的研究[J]. 激光技术, 2016, 40(1): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201601020.htm

    Zou D B, Liu H, Zhao L, et al. Research of signal recognition of distributed optical fiber vibration sensors[J]. Laser Technol, 2016, 40(1): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201601020.htm
    [23] 帅师, 王翦, 吴红艳, 等. 一种分布式光纤传感系统的信号识别方法[J]. 复旦学报(自然科学版), 2018, 57(5): 611-618. https://www.cnki.com.cn/Article/CJFDTOTAL-FDXB201805009.htm

    Shuai S, Wang J, Wu H Y, et al. A signal recognition method for distributed optical fiber sensor system[J]. J Fudan Univ (Nat Sci), 2018, 57(5): 611-618. https://www.cnki.com.cn/Article/CJFDTOTAL-FDXB201805009.htm
    [24] Tejedor J, Martins H F, Piote D, et al. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system[J]. J Light Technol, 2016, 34(19): 4445-4453. doi: 10.1109/JLT.2016.2542981
    [25] Tejedor J, Macias-Guarasa J, Martins H F, et al. A novel fiber optic based surveillance system for prevention of pipeline integrity threats[J]. Sensors, 2017, 17(2): 355. doi: 10.3390/s17020355
    [26] 李志辰, 刘琨, 江俊峰, 等. 光纤周界安防系统的高准确度事件识别方法[J]. 红外与激光工程, 2018, 47(9): 0922002. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201809024.htm

    Li Z C, Liu K, Jiang J F, et al. A high-accuracy event discrimination method in optical fiber perimeter security system[J]. Infrared Laser Eng, 2018, 47(9): 0922002. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201809024.htm
    [27] 陈沛超, 游赐天, 丁攀峰. 光纤周界防区入侵事件的模式识别研究[J]. 中国激光, 2019, 46(10): 1006001. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201910033.htm

    Chen P C, You C T, Ding P F. Pattern recognition of intrusion events in perimeter defense areas of optical fiber[J]. Chin J Lasers, 2019, 46(10): 1006001. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201910033.htm
    [28] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc Math Phys Eng Sci, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193
    [29] Liu K, Tian M, Liu T G, et al. A high-efficiency multiple events discrimination method in optical fiber perimeter security system[J]. J Light Technol, 2015, 33(23): 4885-4890. doi: 10.1109/JLT.2015.2494158
    [30] 蒋立辉, 盖井艳, 王维波, 等. 基于总体平均经验模态分解的光纤周界预警系统模式识别方法[J]. 光学学报, 2015, 35(10): 1006002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201510007.htm

    Jiang L H, Gai J Y, Wang W B, et al. Ensemble empirical mode decomposition based event classification method for the fiber-optic intrusion monitoring system[J]. Acta Opt Sin, 2015, 35(10): 1006002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201510007.htm
    [31] 李静云, 安博文, 陈元林, 等. 基于时频特征的光纤振动模式识别研究[J]. 光通信技术, 2018, 42(7): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GTXS201807017.htm

    Li J Y, An B W, Chen Y L, et al. Research on optical fiber vibration pattern recognition based on time-frequency characteristics[J]. Opt Commun Technol, 2018, 42(7): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GTXS201807017.htm
    [32] 朱程辉, 朱睿, 王建平, 等. 基于自适应EMD的光纤安防系统入侵信号识别[J]. 传感器与微系统, 2020, 39(4): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202004008.htm

    Zhu C H, Zhu R, Wang J P, et al. Intrusion signal recognition of optical fiber security & protection system based on adaptive EMD[J]. Transducer and Microsystem Technologies, 2020, 39(4): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202004008.htm
    [33] 张景川, 曾周末, 赖平, 等. 基于小波能谱和小波信息熵的管道异常振动事件识别方法[J]. 振动与冲击, 2010, 29(5): 1-4. doi: 10.3969/j.issn.1000-3835.2010.05.001

    Zhang J C, Zeng Z M, Lai P, et al. A recognition method with wavelet energy spectrum and wavelet information entropy for abnormal vibration events of a petroleum pipeline[J]. J Vib Shock, 2010, 29(5): 1-4. doi: 10.3969/j.issn.1000-3835.2010.05.001
    [34] 李彦, 梁正桃, 李立京, 等. 基于小波和支持向量机的光纤微振动传感器模式识别[J]. 传感器与微系统, 2013, 32(2): 43-45, 49. doi: 10.3969/j.issn.1000-9787.2013.02.013

    Li Y, Liang Z T, Li L J, et al. Pattern recognition of fiber-optic micro vibration sensor based on wavelet and SVM[J]. Transducer Microsyst Technol, 2013, 32(2): 43-45, 49. doi: 10.3969/j.issn.1000-9787.2013.02.013
    [35] Wu H J, Xiao S K, Li X Y, et al. Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry (Φ-OTDR)[J]. J Light Technol, 2015, 33(15): 3156-3162. doi: 10.1109/JLT.2015.2421953
    [36] 喻骁芒, 罗光明, 朱珍民, 等. 分布式光纤传感器周界安防入侵信号的多目标识别[J]. 光电工程, 2014, 41(1): 36-41. doi: 10.3969/j.issn.1003-501X.2014.01.007

    Yu X M, Luo G M, Zhu Z M, et al. The multi target recognition of intrusion signal of perimeter security with distributed fiber-optic sensor[J]. Opto-Electron Eng, 2014, 41(1): 36-41. doi: 10.3969/j.issn.1003-501X.2014.01.007
    [37] 李凯彦, 赵兴群, 孙小菡, 等. 一种用于光纤链路振动信号模式识别的规整化复合特征提取方法[J]. 物理学报, 2015, 64(5): 054304. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201505033.htm

    Li K Y, Zhao X Q, Sun X H, et al. A regular composite feature extraction method for vibration signal pattern recognition in optical fiber link system[J]. Acta Phys Sin, 2015, 64(5): 054304. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201505033.htm
    [38] Wu H J, Qian Y, Zhang W, et al. Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring[J]. Photonic Sens, 2017, 7(4): 305-310. doi: 10.1007/s13320-017-0360-1
    [39] 彭宽, 冯诚, 王森懋, 等. 基于时/频域综合特征提取的分布式光纤入侵监测系统事件识别方法[J]. 光学学报, 2019, 39(6): 0628002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201906041.htm

    Peng K, Feng C, Wang S M, et al. Event discrimination method for distributed optical fiber intrusion sensing system based on integrated time/frequency domain feature extraction[J]. Acta Opt Sin, 2019, 39(6): 0628002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201906041.htm
    [40] Sun Q, Feng H, Yan X Y, et al. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction[J]. Sensors, 2015, 15(7): 15179-15197. doi: 10.3390/s150715179
    [41] Aslangul S A. Detecting tunnels for border security based on fiber optical distributed acoustic sensor data using DBSCAN[C]//Proceedings of the 9th International Conference on Sensor Networks, 2020: 78-84.
    [42] Cortes C, Vapnik V. Support-vector networks[J]. Mach Learn, 1995, 20(3): 273-297.
    [43] Qi X X, Ji J W, Han X W, et al. An Approach of passive vehicle type recognition by acoustic signal based on SVM[C]//Proceedings of the 2009 Third International Conference on Genetic and Evolutionary Computing, 2009: 545-548.
    [44] King D, Lyons W B, Flanagan C, et al. A multipoint optical fibre sensor system for use in process water systems based on artificial neural network pattern recognition techniques[J]. Sens Actuator A Phys, 2004, 115(2-3): 293-302. doi: 10.1016/j.sna.2004.03.068
    [45] Lewis E, Sheridan C, O'Farrell M, et al. Principal component analysis and artificial neural network based approach to analysing optical fibre sensors signals[J]. Sens Actuator A Phys, 2007, 136(1): 28-38. doi: 10.1016/j.sna.2007.02.012
    [46] 张俊楠, 娄淑琴, 梁生. 基于SVM算法的φ-OTDR分布式光纤扰动传感系统模式识别研究[J]. 红外与激光工程, 2017, 46(4): 0422003. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201704033.htm

    Zhang J N, Lou S Q, Liang S. Study of pattern recognition based on SVM algorithm for φ-OTDR distributed optical fiber disturbance sensing system[J]. Infrared Laser Eng, 2017, 46(4): 0422003. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201704033.htm
    [47] Tipping M E. The relevance vector machine[C]//Advances in Neural Information Processing Systems, 2000: 652-658.
    [48] 朱永利, 尹金良. 组合核相关向量机在电力变压器故障诊断中的应用研究[J]. 中国电机工程学报, 2013, 33(22): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201322010.htm

    Zhu Y L, Yin J L. Study on application of multi-kernel learning relevance vector machines in fault diagnosis of power transformers[J]. Proc IEEE Inst Electr Electron Eng, 2013, 33(22): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201322010.htm
    [49] 孙茜, 曾周末, 李健. 相关向量机在光纤预警系统模式识别中的应用[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(12): 1115-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201412012.htm

    Sun Q, Zeng Z M, Li J. Application of relevance vector machine in pattern recognition of optical fiber pre-warning system[J]. J Tianjin Univ (Sci Technol), 2014, 47(12): 1115-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201412012.htm
    [50] Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by error propagation[M]//Parallel Distributed Processing: Explorations in the Microstructure Of Cognition, Vol. 1: Foundations. Cambridge: MIT Press, 1986: 318-362.
    [51] 李小玉, 吴慧娟, 彭正谱, 等. 基于时间序列奇异谱特征的Φ-OTDR扰动检测方法[J]. 光子学报, 2014, 43(4): 0428001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201404031.htm

    Li X Y, Wu H J, Peng Z P, et al. A novel time sequence singular spectrum analysis method for Φ-OTDR disturbance detection system[J]. Acta Photo Sin, 2014, 43(4): 0428001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201404031.htm
    [52] 谢鑫, 吴慧娟, 饶云江. 一种基于光纤布喇格光栅振动传感器的光纤围栏入侵监测系统及其模式识别[J]. 光子学报, 2014, 43(5): 0506005. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201405006.htm

    Xie X, Wu H J, Rao Y J. A fiber-optical perimeter intrusion detection system based on the fiber Bragg grating vibration sensors and its identification method[J]. Acta Photo Sin, 2014, 43(5): 0506005. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201405006.htm
    [53] 沈隆翔, 封皓, 沙洲, 等. 基于下变频和IQ解调的外差型相位敏感光时域反射技术的模式识别[J]. 光学学报, 2017, 37(8): 0806005. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201708010.htm

    Shen L X, Feng H, Sha Z, et al. Pattern recognition of heterodyne phase-sensitive optical time-domain reflection technique based on down conversion and IQ demodulation[J]. Acta Opt Sin, 2017, 37(8): 0806005. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201708010.htm
    [54] Aktas M, Akgun T, Demircin M U, et al. Deep learning based threat classification in distributed acoustic sensing systems[C]//Proceedings of the 2017 25th Signal Processing and Communications Applications Conference (SIU), 2017.
    [55] Xu C J, Guan J J, Bao M, et al. Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR[J]. Opt Eng, 2018, 57(1): 016103. 10.1117/1.OE.57.1.016103
    [56] Shi Y, Wang Y Y, Zhao L, et al. An event recognition method for Φ-OTDR sensing system based on deep learning[J]. Sensors (Basel), 2019, 19(15): 3421. doi: 10.3390/s19153421
    [57] 吴俊, 管鲁阳, 鲍明, 等. 基于多尺度一维卷积神经网络的光纤振动事件识别[J]. 光电工程, 2019, 46(5): 180493. doi: 10.12086/oee.2019.180493

    Wu J, Guan L Y, Bao M, et al. Vibration events recognition of optical fiber based on multi-scale 1-D CNN[J]. Opto-Electron Eng, 2019, 46(5): 180493. doi: 10.12086/oee.2019.180493
    [58] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 2672-2680.
    [59] Shiloh L, Eyal A, Giryes R. Deep learning approach for processing fiber-optic DAS seismic data[C]//Proceedings of the 26th International Conference on Optical Fiber Sensors, 2018: ThE22.
    [60] Li W, Zeng Z Q, Qu H Q, et al. A novel fiber intrusion signal recognition method for ofps based on SCN with dropout[J]. J Light Technol, 2019, 37(20): 5221-5230. doi: 10.1109/JLT.2019.2930624
    [61] Wang Z Y, Zheng H R, Li L C, et al. Practical multi-class event classification approach for distributed vibration sensing using deep dual path network[J]. Opt Express, 2019, 27(17): 23682-23692. doi: 10.1364/OE.27.023682
    [62] Chen X, Xu C J. Disturbance pattern recognition based on an ALSTM in a long‐distance φ‐OTDR sensing system[J]. Microw Opt Technol Lett, 2020, 62(1): 168-175. doi: 10.1002/mop.32025
    [63] Li Z Q, Zhang J W, Wang M N, et al. Fiber distributed acoustic sensing using convolutional long short-term memory network: a field test on high-speed railway intrusion detection[J]. Opt Express, 2020, 28(3): 2925-2938. doi: 10.1364/OE.28.002925
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  498
  • HTML全文浏览量:  286
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-10
  • 修回日期:  2020-11-20

目录

    /

    返回文章
    返回