Design of a photonic crystal fiber with low confinement loss and high birefringence
-
摘要: 本文设计了一种适用于长距离光纤通信的新型光子晶体光纤。该光纤包层内椭圆形和圆形空气孔呈交错排列,纤芯两侧为两个小椭圆空气孔。利用有限元分析方法对所设计光纤的传输特性进行分析并对其结构进行了优化,确定了最佳结构。结果表明,波长为1550 nm时,此新型光子晶体光纤在最佳结构下可提供高达3.51×10-2的高双折射和低至1.5×10-9 dB/m的限制性损耗。与现存的引入椭圆形空气孔的光子晶体光纤相比,本文中的光子晶体光纤的双折射系数有较大提高,限制性损耗系数降低了5个数量级。另外,本文还详细研究了光子晶体光纤的色散随光子晶体光纤结构的变化以及其布里渊增益特性,并分析了其可制造性。基于其高双折射和低限制性损耗特性,此种光纤可应用于长距离光纤通信系统。Abstract: A photonic crystal fiber (PCF) for long distance communication was proposed in this paper. The circular and elliptical air holes distribute in the cladding, and there are two small elliptical air holes around the core in cross section of the PCF. The characteristics of the PCF were analyzed by using the finite element method (FEM) systematically. The results show that the PCF offers an ultrahigh birefringence of 3.51×10-2 and the confinement loss as low as 1.5×10-9 dB/m with the optimal structure at the wavelength of 1550 nm. Compared with the existing photonic crystal fibers with elliptical air holes, the birefringence has a large increase, and the confinement loss reduces by 5 orders of magnitude. Additionally, we also analyzed the relationship between the dispersion of the PCF and the wavelength, and obtained the Brillouin gain spectrum characteristics. In general, the PCF can be used in long distance communication system.
-
表 1 光纤结构及完美匹配层参数
Table 1. Parameters of the PCF structure and PML
Parameter/unit Ʌ/μm b/μm r/μm d/μm Value 0.87 0.4 5.046 0.2 表 2 与现有光子晶体光纤的性能比较
Table 2. Comparison with the existing PCFs
References L(λ)/(dB/m) B D/(ps·km-1·nm-1) Ref. [6] 0.01 0.87×10-2 — Ref. [8] 0.365 3.41×10-2 -399.98 Ref. [12] — 2.89×10-2 -600 Ref. [14] — 2×10-2 -200 Ref. [15] 5×10-4 8×10-3 — Ref. [16] 1.17×10-4 2.54×10-2 -722.48 Ref. [27] 10-3 1.98×10-2 — Ref. [28] 1.24×10-4 — -100 The designed PCF 1.5×10-9 3.51×10-2 -500 -
[1] Steel M J, Osgood R M. Polarization and dispersive properties of elliptical-hole photonic crystal fibers[J]. J Light Technol, 2001, 19(4): 495-503. doi: 10.1109/50.920847 [2] 王晓愚, 崔永兆, 毕卫红, 等. 基于拉曼光谱的光子晶体光纤孔内生长石墨烯层数控制方法的研究[J]. 光谱学与光谱分析, 2020, 40(12): 3659-3664. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202012002.htmWang X Y, Cui Y Z, Bi W H, et al. Research on control method of Graphene layers grown in air holes of photonic crystal fiber based on Raman spectroscopy[J]. Spectrosc Spect Anal, 2020, 40(12): 3659-3664. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202012002.htm [3] Robert P, Fourcade-Dutin C, Dauliat R, et al. Spectral correlation of four-wave mixing generated in a photonic crystal fiber pumped by a chirped pulse[J]. Opt Lett, 2020, 45(15): 4148-4151. doi: 10.1364/OL.398614 [4] 魏方皓, 张祥军, 唐守锋. 基于表面等离子体共振的光子晶体光纤折射率传感器的设计与分析[J]. 半导体光电, 2020, 41(1): 35-38, 43. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG202001007.htmWei F H, Zhang X J, Tang S F. Design and analysis of photonic crystal fiber refractive index sensor based on surface Plasmon resonance[J]. Semicond Optoelectron, 2020, 41(1): 35-38, 43. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG202001007.htm [5] 魏红彦, 裴小娜. 近红外零色散平坦全固态微结构光纤的设计[J]. 光通信技术, 2018, 42(10): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GTXS201810012.htmWei H Y, Pei X N. Design of near-infrared zero-dispersion flattened all-solid microstructured optical fiber[J]. Opt Commun Technol, 2018, 42(10): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GTXS201810012.htm [6] Yang K Y, Chau Y F, Huang Y W, et al. Design of high birefringence and low confinement loss photonic crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding[J]. J Appl Phys, 2011, 109(9): 093103. doi: 10.1063/1.3583560 [7] 武丽敏, 宋朋, 王静, 等. 一种高双折射高负平坦色散压缩型光子晶体光纤[J]. 红外与激光工程, 2016, 45(S1): S120001. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2016S1032.htmWu L M, Song P, Wang J, et al. A squeezed lattice high negative dispersion and high birefringence photonic crystal fiber[J]. Infrared Laser Eng, 2016, 45(S1): S120001. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2016S1032.htm [8] Liao J F, Huang T Y, Xiong Z Z, et al. Design and analysis of an ultrahigh birefringent nonlinear spiral photonic crystal fiber with large negative flattened dispersion[J]. Optik, 2017, 135: 42-49. doi: 10.1016/j.ijleo.2017.01.054 [9] Liu Q, Liu Q Y, Sun Y D, et al. A high-birefringent photonic quasi-crystal fiber with two elliptical air holes[J]. Optik, 2019, 184: 10-15. doi: 10.1016/j.ijleo.2019.03.017 [10] 刘旭安, 程和平, 焦铮. 双孔单元四边形晶格光子晶体光纤特性的研究[J]. 激光技术, 2019, 43(1): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201901010.htmLiu X A, Cheng H P, Jiao Z. Properties of regular-lattice photonic crystal fiber based on a double-hole unit[J]. Laser Technol, 2019, 43(1): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201901010.htm [11] Agbemabiese P A, Akowuah E K. Numerical analysis of photonic crystal fiber of ultra-high birefringence and high nonlinearity[J]. Sci Rep, 2020, 10(1): 21182. doi: 10.1038/s41598-020-77114-x [12] Liu M, Hou J Y, Yang X, et al. Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity[J]. Chin Phys B, 2018, 27(1): 014206. doi: 10.1088/1674-1056/27/1/014206 [13] Yang T Y, Wang E L, Jiang H M, et al. High birefringence photonic crystal fiber with high nonlinearity and low confinement loss[J]. Opt Express, 2015, 23(7): 8329-8337. doi: 10.1364/OE.23.008329 [14] Sonne A, Ouchar A, Sonne K. Improving of high birefringence with negative dispersion using double octagonal lattice photonic crystal fiber[J]. Optik, 2016, 127(1): 8-10. doi: 10.1016/j.ijleo.2015.09.061 [15] Gao Y, Sima C, Cheng J, et al. Highly-birefringent and ultra-wideband low-loss photonic crystal fiber with rhombic and elliptical holes[J]. Opt Commun, 2019, 450: 172-175. doi: 10.1016/j.optcom.2019.06.004 [16] Prajapati Y K, Kumar R, Singh V. Design of a photonic crystal Fiber for dispersion compensation and sensing applications using modified air holes of the cladding[J]. Braz J Phys, 2019, 49(5): 745-751. doi: 10.1007/s13538-019-00686-1 [17] Li Y Q, Zhang L X, Fan H B, et al. A self-heterodyne detection Rayleigh Brillouin optical time domain analysis system[J]. Opt Commun, 2018, 427: 190-195. doi: 10.1016/j.optcom.2018.06.054 [18] 荣耕辉, 伊小素. 一种新型高双折射光子晶体光纤的特性研究[J]. 半导体光电, 2018, 39(2): 211-215. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201802014.htmRong G H, Yi X S. Investigation on a new high birefringence photonic crystal fiber[J]. Semicond Optoelectron, 2018, 39(2): 211-215. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201802014.htm [19] 张学典, 袁曼曼, 常敏, 等. 正方形空气孔光子晶体光纤特性分析[J]. 光电工程, 2018, 45(5): 170633. doi: 10.12086/oee.2018.170633Zhang X D, Yuan M M, Chang M, et al. Characteristics in square air hole structure photonic crystal fiber[J]. Opto-Electron Eng, 2018, 45(5): 170633. doi: 10.12086/oee.2018.170633 [20] Chen N, Zhang X D, Nie F K, et al. Dispersion-compensating photonic crystal fiber with wavelength tunability based on a modified dual concentric core structure[J]. J Mod Opt, 2018, 65(12): 1459-1465. doi: 10.1080/09500340.2018.1454526 [21] 杨天宇, 姜海明, 王二垒, 等. 一种近红外波段的高双折射高非线性光子晶体光纤[J]. 红外与毫米波学报, 2016, 35(3): 350-354. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201603016.htmYang T Y, Jiang H M, Wang E L, et al. Photonic crystal fibers with large birefringence and high nonlinearity in near-infrared band[J]. J Infrared Millim Waves, 2016, 35(3): 350-354. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201603016.htm [22] 潘宇航, 路元刚, 彭楗钦, 等. 光子晶体光纤的布里渊增益谱特性[J]. 光学学报, 2019, 39(6): 0619001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201906034.htmPan Y H, Lu Y G, Pen J Q, et al. Brillouin gain spectrum characteristics of photonic crystal fibers[J]. Acta Opt Sin, 2019, 39(6): 0619001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201906034.htm [23] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639. doi: 10.3390/s120708601 [24] 徐志钮, 胡宇航, 赵丽娟, 等. 基于改进二次多项式拟合的布里渊频移快速高精度提取算法[J]. 光谱学与光谱分析, 2020, 40(3): 842-848. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202003039.htmXu Z N, Hu Y H, Zhao L J, et al. Fast and highly accurate Brillouin frequency shift extracted algorithm based on modified quadratic polynomial fit[J]. Spectrosc Spect Anal, 2020, 40(3): 842-848. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202003039.htm [25] 徐志钮, 胡宇航, 赵丽娟, 等. 基于单斜坡法的光电复合海缆温度、应变快速测量方法[J]. 电力自动化设备, 2020, 40(5): 202-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS202005028.htmXu Z N, Hu Y H, Zhao L J, et al. Rapid temperature and strain measurement method for optic-electric composite submarine cable based on slope-assisted method[J]. Electric Power Autom Equip, 2020, 40(5): 202-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS202005028.htm [26] 盛勇, 陆驹, 姚高峰, 等. 椭圆空气孔矩形结构光子晶体光纤的高双折射及限制损耗分析[J]. 光子学报, 2014, 43(S1): 0106008. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB2014S1009.htmSheng Y, Lu J, Yao G F, et al. Analysis of high birefringent and confinement loss of elliptical air-holes rectangular photonic crystal fiber[J]. Acta Photon Sin, 2014, 43(S1): 0106008. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB2014S1009.htm [27] Zhang W, Li S G, Bao Y J, et al. A design for single-polarization single-mode photonic crystal fiber with rectangular lattice[J]. Opt Commun, 2016, 359: 448-454. doi: 10.1016/j.optcom.2015.09.079 [28] 潘超, 周俊萍, 倪海滨. 胶体光子晶体修饰光纤及相对湿度检测应用[J]. 光电工程, 2018, 45(9): 180168. doi: 10.12086/oee.2018.180168Pan C, Zhou J P, Ni H B. Colloidal photonic crystal modified optical fiber and relative humidity detection application[J]. Opto-Electron Eng, 2018, 45(9): 180168. doi: 10.12086/oee.2018.180168 [29] Sun C Y, Wang W C, Jia H Z. A squeezed photonic crystal fiber for residual dispersion compensation with high birefringence over S+C+L+U wavelength bands[J]. Opt Commun, 2020, 458: 124757. doi: 10.1016/j.optcom.2019.124757