留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Jet-A表征燃料/乙醇掺混燃料层流燃烧特性研究

何旭 江正晖 桑正 刘泽昌 冯光远 杨青 蒋厚实

何旭, 江正晖, 桑正, 刘泽昌, 冯光远, 杨青, 蒋厚实. Jet-A表征燃料/乙醇掺混燃料层流燃烧特性研究[J]. 机械工程学报. doi: 10.123456/j.rhnk.0000-00
引用本文: 何旭, 江正晖, 桑正, 刘泽昌, 冯光远, 杨青, 蒋厚实. Jet-A表征燃料/乙醇掺混燃料层流燃烧特性研究[J]. 机械工程学报. doi: 10.123456/j.rhnk.0000-00
HE Xu, JIANG Zhenghui, SANG Zheng, LIU Zechang, FENG Guangyuan, YANG Qin, JIANG Houshi. Laminar Combustion Characteristics of Jet-A surrogate Fuel /Ethanol[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.123456/j.rhnk.0000-00
Citation: HE Xu, JIANG Zhenghui, SANG Zheng, LIU Zechang, FENG Guangyuan, YANG Qin, JIANG Houshi. Laminar Combustion Characteristics of Jet-A surrogate Fuel /Ethanol[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.123456/j.rhnk.0000-00

Jet-A表征燃料/乙醇掺混燃料层流燃烧特性研究

doi: 10.123456/j.rhnk.0000-00
基金项目: 国家自然科学基金面上项目 (No:21961122007)
详细信息
    作者简介:

    何旭(1976—),男,博士,副教授, E-mail: 11111111@bit.edu.cn

    通讯作者:

    蒋厚实(1990-),男,博士,助理研究员, E-mail:12345678@hotmail.com

  • 中图分类号: TK421.2

Laminar Combustion Characteristics of Jet-A surrogate Fuel /Ethanol

  • 摘要: 为了研究初始温度470K、初始压力0.1MPa下乙醇掺混对航空煤油层流火焰燃烧特性的影响,文中利用定容燃烧弹设备结合仿真进行对比分析。结果表明,乙醇的加入显著提升了航空煤油的层流火焰燃烧速度,但仿真结果与试验数据之间存在较大的偏差,在低当量比时尤为严重,需进一步优化机理。在此基础上通过敏感性分析,发现对层流火焰燃烧速度影响较大的4个基元反应,通过对4个基元反应的参数进行调整,修改得到新模型,该模型与试验值存在较好的吻合度。

     

  • 图  层流燃烧测试系统示意图

    Figure  1.  Schematic diagram of laminar combustion test

    图  不同掺混比下火焰传播图像(P=0.1MPa,T=470K,Φ=1.0)

    Figure  2.  Flame propagation images under different blending ratios(P=0.1MPa,T=470K,

    图  不同掺混比时的火焰传播速度与火焰拉伸率的关系

    Figure  3.  The relationship between stretched flame propagation speed and stretch rate

    图  T=470K、P=0.1MPa时不同掺混比下的层流火焰燃烧速度随当量比的变化

    Figure  4.  Laminar burning velocities with equivalent ratio of various blending ratios when T=470K、P=0.1MPa

    图  初始机理的敏感性分析

    Figure  5.  Sensitivity analysis of the initial mechanism

    图  修正后的机理与试验数据的对比

    Figure  6.  Comparison of the revised mechanism with experimental data

    表  1  试验工况表

    Table  1.   Experimental initial condition

    参数名称数值
    试验温度T/K470
    试验压力Pi/MPa0.1
    掺混比βE0,E30,E60
    当量比Φ0.8,0.9,1.0,1.1,1.2,1.3,1.4
    下载: 导出CSV

    表  2  修正前后主要基元反应系数的对比

    Table  2.   Comparison of Modified Primitive Response Coefficients

    基元反应原模型参数修正后的模型参数参考文献
    AnEaAnEa
    CO+OH=CO2+H7.02E+042.1-355.71.40E+051.9-2347.7[27]
    HCO+O2=CO+HO27.58E+120.0410.03.00E+120.00.0[28]
    C3H6+H=C3H5-A+H23.64E+052.54361.25.00E+120.01505.7[29]
    H+O2(+M)=HO2(+M)4.65E+120.440.05.80E+120.40.0[30]
    下载: 导出CSV
  • [1] 肖献法. 国务院《2030年前碳达峰行动方案》给交通运输、汽车等行业定调[J]. 商用汽车, 2021(11): 16-22.

    XIAO Xianfa. The state council's action plan for carbon dioxide peak before 2030 sets the tone for transportation, automobile and other industries[J]. Commercial Vehicle, 2021(11): 16-22. (in Chinese)
    [2] 赵琳, 刘文峰, 李斌, 等. 政策导向下的新能源公交车节能减排效果评估[J]. 北京理工大学学报, 2016, 36(增刊2): 99-102.

    ZHAO Lin, LIU Wenfeng, LI Bin, et al. Evaluation on energy-saving and emission-reduction results of new energy buses based on policy guidance[J]. Transactions of Beijing institute of Technology, 2016, 36(S2): 99-102. (in Chinese)
    [3] 何旭, 张志鹏, 吴昊, 等. 基于二维激光诱导炽光法的棉籽油扩散火焰碳烟生成特性[J]. 北京理工大学学报, 2019, 39(3): 235-240, 326.

    HE Xu, ZHANG Zhipeng, WU Hao, et al. Investigation on the soot formation of cottonseed oil diffusion flame by two-dimensional laser induced incandescence[J]. Transactions of Beijing institute of Technology, 2019, 39(3): 235-240, 326. (in Chinese)
    [4] FOONG T M, MORGANTI K J, BREAR M J, et al. The effect of charge cooling on the ron of ethanol/gasoline blends [J]. Sae International Journal of Fuels & Lubricants, 2013, 6(1): 34-43.
    [5] YANG Q, LIU Z, HOU X, et al. Measurements of laminar flame speeds and flame instability analysis of E30-air premixed flames at elevated temperatures and pressures [J]. Fuel, 2020, 259: 116223.
    [6] 范学军, 俞刚. 大庆RP-3航空煤油热物性分析 [J]. 推进技术, 2006, 27(2): 187-192.

    FANG Xuejun , YU Gang. Analysis of the mophysical properties of Daqing RP-3 aviation kerosene [J]. Journal of Propulsion TechnologY, 2006, 27(2): 187-192. (in Chinese)
    [7] 肖保国, 杨顺华, 赵慧勇, 等. RP-3航空煤油燃烧的详细和简化化学动力学模型 [J]. 航空动力学报, 2010, 25(9): 1948-1955.

    XIAO Baoguo, YANG Shunhua, ZHAO Huiyong, et al. Detailed and reduced chemical kinetic mechanisms for RP-3aviation kerosene combustion [J]. Journal of Aeronautical Dynamics, 2010, 25(9): 1948-1955. (in Chinese)
    [8] ZHANG R L, JIN J, LE J L. The simulation of endothermic fuel flow in cooling channels of Scramjet [J].
    [9] 曾文, 刘靖, 张治博, 等. 一种新的RP-3航空煤油模拟替代燃料 [J]. 航空动力学报, 2017, 32(10): 2314-2320.

    ZENG Weng, LIU Jing, ZHANG Zhibo, et al. A new surrogate fuel of RP-3 kerosene [J]. Journal of Aeronautical Dynamics, 2017, 32(10): 2314-2320. (in Chinese)
    [10] 曾文, 陈欣, 马洪安, 等. RP-3航空煤油层流燃烧特性的实验 [J]. 航空动力学报, 2015, 30(12): 2888-2896.

    ZENG Weng, CHEN Xin, MA Hongan, et al. Experiment on laminar combustion characteristics of RP-3 kerosene [J]. Journal of Aeronautical Dynamics, 2015, 30(12): 2888-2896. (in Chinese)
    [11] MA H, XIE M, ZENG W, et al. Experimental study on combustion characteristics of Chinese RP-3 kerosene [J]. Chinese Journal of Aeronautics, 2016, 29(2): 375-385.
    [12] LIU J, HU E, ZENG W, et al. A new surrogate fuel for emulating the physical and chemical properties of RP-3 kerosene [J]. Fuel, 2020: 259: 116210.
    [13] DAGAUT P. On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel [J]. Physical Chemistry Chemical Physics, 2002, 4(11): 2079-2094.
    [14] DAGAUT P, EL BAKALI A, RISTORI A. The combustion of kerosene: Experimental results and kinetic modelling using 1- to 3-component surrogate model fuels [J]. Fuel, 2006, 85(7-8): 944-956.
    [15] DOOLEY S, WON S H, CHAOS M, et al. A jet fuel surrogate formulated by real fuel properties [J]. Combustion and Flame, 2010, 157(12): 2333-2339.
    [16] DOOLEY S, WON S H, HEYNE J, et al. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena [J]. Combustion and Flame, 2012, 159(4): 1444-1466.
    [17] XIOURIS C, YE T, JAYACHANDRAN J, et al. Laminar flame speeds under engine-relevant conditions: Uncertainty quantification and minimization in spherically expanding flame experiments [J]. Combustion & Flame, 2016, 163: 270-283.
    [18] GIANNAKOPOULOS G K, GATZOULIS A, FROUZAKIS C E, et al. Consistent definitions of “Flame Displacement Speed” and “Markstein Length” for premixed flame propagation [J]. Combustion & Flame, 2015, 162(4): 1249-1264.
    [19] CLAVIN P. Dynamic behavior of premixed flame fronts in laminar and turbulent flows [J]. Progress in Energy and Combustion Science, 1985, 11(1): 1-59.
    [20] 张艳群, 孟凡荣. MATLAB在图像边缘检测中的应用 [J]. 计算机应用研究, 2004, (06): 144-146.

    ZHANG Yanqun, MENG Fanrong. Application of MATLAB in I mage Edge Detection [J]. Application Research of Computers, 2004, (06): 144-146.
    [21] MARKSTEIN G H. Experimental and Theoretical Studies of Flame-Front Stability [J]. Dynamics of Curved Fronts, 1988: 413-423.
    [22] KELLEY A P, LAW C K. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames [J]. Combustion & Flame, 2009, 156(9): 1844-1851.
    [23] MARKSTEIN G H. Experimental and Theoretical Studies of Flame-Front Stability [J]. Dynamics of Curved Fronts, 1988: 413-423.
    [24] YU W, YANG W, TAY K, et al. Development of a new skeletal mechanism for decalin oxidation under engine relevant conditions [J]. Fuel, 2018, 212: 41-48.
    [25] ZHENG C. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure [J]. Combustion & Flame, 2015, 162(6): 2442-2453.
    [26] MOFFAT R J. Describing the uncertainties in experimental results [J]. Experimental Thermal & Fluid Science, 1988, 1(1): 3-17.
    [27] LI Q, HU E, YU C, et al. Measurements of laminar flame speeds and flame instability analysis of 2-methyl-1-butanol–air mixtures [J]. Fuel, 2013, 112(3): 263-271.
    [28] FISHER E M, PITZ W J, CURRAN H J, et al. Detailed chemical kinetic mechanisms for combustion of oxygenated fuels [J]. Proceedings of the Combustion Institute, 2000, 28(2): 1579-1586.
    [29] RANZI E, FRASSOLDATI A, STAGNI A, et al. Reduced kinetic schemes of complex reaction systems: fossil and biomass-derived transportation fuels [J]. International Journal of Chemical Kinetics, 2014, 46(9): 512-542.
    [30] 钟北京, 姚文斐. 基于特征值分析的正癸烷骨架和总包简化机理 [J]. 物理化学学报, 2014, 30(2): 210-216.

    ZHONG Beijing, YAO Wenfei. Simplified mechanism of n-decane skeleton and general package based on eigenvalue analysis [J]. Acta Physical Chemistry, 2014, 46(9): 512-542. (in Chinese)
    [31] CAI L, PITSCH H. Optimized chemical mechanism for combustion of gasoline surrogate fuels [J]. Combustion & Flame, 2015, 162(5): 1623-1637.
    [32] METCALFE W K, BURKE S M, AHMED S S, et al. A hierarchical and comparative kinetic modeling study of C1− C2 hydrocarbon and oxygenated fuels [J]. International Journal of Chemical Kinetics, 2013, 45(10): 638-675.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  165
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24
  • 网络出版日期:  2023-07-10

目录

    /

    返回文章
    返回