留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真实气体效应对等离子体鞘套及电磁参数的影响

李俊红 吕俊明 苗文博 程晓丽

李俊红,吕俊明,苗文博,等.真实气体效应对等离子体鞘套及电磁参数的影响[J].航空动力学报,2022,37(8):1579‑1586. doi: 10.13224/j.cnki.jasp.20210124
引用本文: 李俊红,吕俊明,苗文博,等.真实气体效应对等离子体鞘套及电磁参数的影响[J].航空动力学报,2022,37(8):1579‑1586. doi: 10.13224/j.cnki.jasp.20210124
LI Junhong,LÜ Junming,MIAO Wenbo,et al.Real gas effects on the plasma sheath and the electromagnetic parameters of the reentry vehicle[J].Journal of Aerospace Power,2022,37(8):1579‑1586. doi: 10.13224/j.cnki.jasp.20210124
Citation: LI Junhong,LÜ Junming,MIAO Wenbo,et al.Real gas effects on the plasma sheath and the electromagnetic parameters of the reentry vehicle[J].Journal of Aerospace Power,2022,37(8):1579‑1586. doi: 10.13224/j.cnki.jasp.20210124

真实气体效应对等离子体鞘套及电磁参数的影响

doi: 10.13224/j.cnki.jasp.20210124
基金项目: 

装备预先研究项目基金 6140206040215

详细信息
    作者简介:

    李俊红(1978-),女,高级工程师,博士,主要从事高温真实气体效应和超声速燃烧数值模拟研究。

  • 中图分类号: V411.3

Real gas effects on the plasma sheath and the electromagnetic parameters of the reentry vehicle

  • 摘要: 针对高速飞行器高超声速飞行环境,建立了热化学非平衡流动数值模拟技术,并对计算方法的可靠性进行了验证,接着开展了真实气体效应对飞行器等离子体鞘套及其电磁参数的影响规律分析。结果表明:飞行器物面中心线等离子体密度峰值与飞行试验符合良好;对于碰撞频率,沿滞止流线,双温模型以及Park反应模型对等离子体碰撞频率的影响趋势是一致的;对于相对介电常数,除激波附近,流场其他区域的实部接近1,激波附近小于1,虚部沿滞止流线逐渐升高;双温模型以及Park反应模型对相对介电常数实部和虚部的影响趋势是一致的。

     

    针对高速飞行器高超声速飞行环境,建立了热化学非平衡流动数值模拟技术,并对计算方法的可靠性进行了验证,接着开展了真实气体效应对飞行器等离子体鞘套及其电磁参数的影响规律分析。结果表明:飞行器物面中心线等离子体密度峰值与飞行试验符合良好;对于碰撞频率,沿滞止流线,双温模型以及Park反应模型对等离子体碰撞频率的影响趋势是一致的;对于相对介电常数,除激波附近,流场其他区域的实部接近1,激波附近小于1,虚部沿滞止流线逐渐升高;双温模型以及Park反应模型对相对介电常数实部和虚部的影响趋势是一致的。The numerical simulation technology of thermochemical non⁃equilibrium flow was established for aircraft hypersonic flight environment,the reliability of the calculation method was verified,and the influence law of high temperature real gas effect on plasma sheath and electromagnetic parameters in plasma was analyzed.The results showed:the numerical calculation results of aircraft peak plasma density on wall central line were in agreement with flight test results,as for the collision frequency,along the stagnation line,the two⁃temperature model and the Park reaction model had the same influence trend on the plasma collision frequency;for the relative dielectric constant,near the shock wave,the real part of other areas of the flow field was close to 1,and the imaginary part gradually increased along the stagnation line;The influence trend of the two⁃temperature model and the Park reaction model on the real and imaginary parts of the relative dielectric constant were consistent.
  • 图  RAM C⁃Ⅱ 模型

    Figure  1.  RAM C⁃Ⅱ model

    图  RAM C⁃Ⅱ 计算网格

    Figure  2.  Sketch of the RAM C⁃Ⅱ computed grid

    图  RAM C⁃Ⅱ 对称面电子密度峰值计算结果与飞行结果的对比

    Figure  3.  Electron density peak comparison between the computation result and the flight test data along the RAM C⁃Ⅱ symmetry plane

    图  RAM C⁃Ⅱ对称面等离子体密度等值线分布(完全催化壁面、单温模型)

    Figure  4.  Plasma density contour on the RAM C⁃Ⅱ symmetry plane (full catalytic wall condition,one⁃temperature model)

    图  热力学模型对RAM C⁃Ⅱ头部滞止线上温度的影响

    Figure  5.  Effect of thermal models on the head temperature distribution along the RAM C⁃Ⅱ head stagnation line

    图  热力学模型对RAM C⁃Ⅱ 头部滞止线上等离子体密度的影响

    Figure  6.  Effect of thermodynamic models on the plasma density along the RAM C⁃Ⅱ head stagnation line

    图  热力学模型对RAM C⁃Ⅱ对称面等离子体峰值密度的影响

    Figure  7.  Effect of thermodynamic models on the plasma density peak on the RAM C⁃Ⅱ symmetry plane

    图  化学反应模型对RAM C⁃Ⅱ头部滞止线上温度的影响

    Figure  8.  Effect of chemical reaction models on the temperature along the RAM C⁃Ⅱ head stagnation line

    图  化学反应模型对RAM C⁃Ⅱ头部滞止线上等离子体密度的影响

    Figure  9.  Effect of chemical reaction models on the plasma density along the RAM C⁃Ⅱ head stagnation line

    图  10  化学反应组分对RAM C⁃Ⅱ对称面等离子体密度峰值的影响

    Figure  10.  Effect of chemical reaction species on the plasma density peak on the RAM C⁃Ⅱ symmetry line

    图  11  化学反应模型对RAM C⁃Ⅱ对称面等离子体密度峰值的影响

    Figure  11.  Effect of chemical reaction models on the plasma density peak on the RAM C⁃Ⅱ symmetry plane

    图  12  RAM C⁃Ⅱ对称面等离子体鞘套碰撞频率等值线分布(完全催化壁面、单温模型)

    Figure  12.  Collision frequency contour distribution of the plasma sheath on the RAM C⁃Ⅱ symmetry plane (full catalytic wall condition and one⁃temperature model)

    图  13  热力学模型对RAM C⁃Ⅱ头部滞止线上等离子体鞘套碰撞频率的影响

    Figure  13.  Effect of thermodynamic models on the plasma sheath collision frequency along the RAM C⁃Ⅱ head stagnation line

    图  16  化学反应模型对RAM C⁃Ⅱ头部滞止线上等离子体鞘套碰撞频率的影响

    Figure  16.  Effect of chemical reaction models on the plasma sheath collision frequency along the RAM C⁃Ⅱ head stagnation line

  • [1] 中国人民解放军总装备部军事训练教材编辑工作委员会.再入物理「M].北京:国防工业出版社,2005.
    [2] YAOBoA stochastic channel model of plasma sheath for hypersonic vehicle in near spaceXi'anXidian University2019(in Chinese)

    YAO Bo.A stochastic channel model of plasma sheath for hypersonic vehicle in near space[D].Xi'an:Xidian University,2019.(in Chinese)

    [3] CURTISJ TTRAMELR WThe AEDC thermochemical non⁃equilibrium package⁃theory and useAEDC⁃TR⁃93⁃201994

    CURTIS J T,TRAMEL R W.The AEDC thermochemical non⁃equilibrium package⁃theory and use[R].AEDC⁃TR⁃93⁃20,1994.

    [4] AKEYN DCROSSA ERadio blackout alleviation and plasma diagnostic results from a 25,000 foot per second blunt⁃body reentry⁃56151970

    AKEY N D,CROSS A E.Radio blackout alleviation and plasma diagnostic results from a 25,000 foot per second blunt⁃body reentry[R].NASA TN D⁃5615,1970.

    [5] GRANTHAMW LFlight results of a 25,000 foot per second re⁃entry experiment using microwave reflectometers to measure plasma electron density and standoff distance⁃60621970

    GRANTHAM W L.Flight results of a 25,000 foot per second re⁃entry experiment using microwave reflectometers to measure plasma electron density and standoff distance[R].NASA TND⁃6062,1970.

    [6] WEAVERW LBOWENJ TtrajectoryEntryentryenvironmentand analysis of spacecraft motion for the RAM C⁃Ⅲ flight experiment⁃25621972

    WEAVER W L,BOWEN J T.trajectory Entry,entry,environment,and analysis of spacecraft motion for the RAM C⁃Ⅲ flight experiment[R].NASA TM X⁃2562,1972.

    [7] JONESW LCROSSA EElectrostatic⁃probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second⁃66171972

    JONES W L,CROSS A E.Electrostatic⁃probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second[R].NASA TN D⁃6617,1972.

    [8] WEAVERW LMultiple⁃orifice liquid injection into hypersonic air streams and application to RAM C⁃Ⅲ flight⁃24861972

    WEAVER W L.Multiple⁃orifice liquid injection into hypersonic air streams and application to RAM C⁃Ⅲ flight[R].NASA TM X⁃2486,1972.

    [9] ZENGXiaofengModeling and scattering analysis of reentry and plasma sheathChengduUniversity of Electronic Science and Technology of China2018(in Chinese)

    ZENG Xiaofeng.Modeling and scattering analysis of reentry and plasma sheath[D].Chengdu:University of Electronic Science and Technology of China,2018.(in Chinese)

    [10] MENGGuipingRe‑entry body electromagnetic scattering characteristics analysis and algorithm researchNanjingNanjing University2019(in Chinese)

    MENG Guiping.Re‑entry body electromagnetic scattering characteristics analysis and algorithm research[D].Nanjing:Nanjing University,2019.(in Chinese)

    [11] WANGYanweiNumerical study on electron density and collision of sheath of hypersonic vehicleHarbinHarbin Institute of Technology2019(in Chinese)

    WANG Yanwei.Numerical study on electron density and collision of sheath of hypersonic vehicle[D].Harbin:Harbin Institute of Technology,2019.(in Chinese)

    [12] 欧阳水吾.高温非平衡空气绕流[M].北京:国防工业出版社,2001.
    [13] GNOFFOP AGUPTAR NSHINNJ LConservation equations and physical models for hypersonic air flows in thermal and chemical non⁃equilibriumNASA TP⁃28671989

    GNOFFO P A,GUPTA R N,SHINN J L.Conservation equations and physical models for hypersonic air flows in thermal and chemical non⁃equilibrium[R].NASA TP⁃2867,1989.

    [14] ZHOUJingyunNumerical simulation of thermochemical non‑equilibrium hypersonic plasma flowBeijingChina Academy of Aerospace Aerodynamics2020(in Chinese)

    ZHOU Jingyun.Numerical simulation of thermochemical non‑equilibrium hypersonic plasma flow[D].Beijing:China Academy of Aerospace Aerodynamics,2020.(in Chinese)

    [15] PARKCAssessment of two temperature kinetic model for ionizing airAIAA⁃87⁃15741987

    PARK C.Assessment of two temperature kinetic model for ionizing air[R].AIAA⁃87⁃1574,1987.

    [16] MIAO W B,CHENU X L,AI B C.Flow configuration effects on mass diffusion part of heat flux in thermal⁃chemical flows[J].Acta Aerodynamica Sinica,2011,29(4):476⁃480.
    [17] 苗文博,罗晓光,程晓丽,等.壁面催化对高超声速飞行器气动热性影响[J].空气动力学学报,2015,32(2):235⁃239.

    MIAO Wenbo,LUO Xiaoguang,CHENG Xiaoli,et al.Surface recombination effects on aerodynamic loads of hypersonic vehicles[J].Acta Aerodynamica Sinica,2015,32(2):235⁃239.(in Chinese)
    [18] LIOUM SA further development of the AUSM+ scheme towards robust and accurate solutions for all speeds⁃41162003

    LIOU M S.A further development of the AUSM+ scheme towards robust and accurate solutions for all speeds[R].AIAA 2003⁃4116,2003.

    [19] 程晓丽,艾邦成,王强.基于分子平均自由程的热流计算壁面网格准则[J].力学学报,2010,42(6):1083⁃1089.

    CHENG Xiaoli,AI Bangcheng,WANG Qiang.A wall grid scale criterion based on the molecule mean free path for the wall heat flux computations by the Navier⁃Stokes equations[J].Chinese Journal of Theoretical and Applied Mechanics,2010,42(6):1083⁃1089.(in Chinese)
  • 加载中
图(20)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  85
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 网络出版日期:  2022-09-06
  • 刊出日期:  2022-08-28

目录

    /

    返回文章
    返回