留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于共轭传热的单边膨胀后体温度场计算分析

李虹杨 王霄 孙超

李虹杨,王霄,孙超.基于共轭传热的单边膨胀后体温度场计算分析[J].航空动力学报,2022,37(8):1569‑1578. doi: 10.13224/j.cnki.jasp.20210346
引用本文: 李虹杨,王霄,孙超.基于共轭传热的单边膨胀后体温度场计算分析[J].航空动力学报,2022,37(8):1569‑1578. doi: 10.13224/j.cnki.jasp.20210346
LI Hongyang,WANG Xiao,SUN Chao.Calculation and analysis of temperature distribution of single expansion after⁃body based on conjugate heat transfer[J].Journal of Aerospace Power,2022,37(8):1569‑1578. doi: 10.13224/j.cnki.jasp.20210346
Citation: LI Hongyang,WANG Xiao,SUN Chao.Calculation and analysis of temperature distribution of single expansion after⁃body based on conjugate heat transfer[J].Journal of Aerospace Power,2022,37(8):1569‑1578. doi: 10.13224/j.cnki.jasp.20210346

基于共轭传热的单边膨胀后体温度场计算分析

doi: 10.13224/j.cnki.jasp.20210346
详细信息
    作者简介:

    李虹杨(1989-),男,高级工程师,博士,主要从事飞行器气动布局设计,进排气系统设计等方面的研究。

  • 中图分类号: V211.3

Calculation and analysis of temperature distribution of single expansion after⁃body based on conjugate heat transfer

  • 摘要: 基于共轭传热数值计算方法,对某高隐身无人机(UAV)单边膨胀后体喷流作用下的壁面温度分布进行研究,利用薄壁型网格解决了面积大且厚度薄的蒙皮、侧板结构导致的网格量过大的问题,构建精度较高的计算模型,并完成相关计算分析,主要结论如下:传统的单一流体计算虽然可以得到相似的温度分布,但得到的温度值偏高,最大可相差50 K以上;共轭传热计算可以得到更为符合实际的结果,并且可以得到结构内部温度梯度的分布,为热应力分析及结构设计提供指导;对比相同流动条件下不同金属材料的影响,某耐高温合金的壁面温度极值比金属钢高约30 K,且其上、下壁面的温差更大,梯度更高,两材料纵向肋板位置温度梯度极值分别为120 K/cm和65 K/cm。

     

    基于共轭传热数值计算方法,对某高隐身无人机(UAV)单边膨胀后体喷流作用下的壁面温度分布进行研究,利用薄壁型网格解决了面积大且厚度薄的蒙皮、侧板结构导致的网格量过大的问题,构建精度较高的计算模型,并完成相关计算分析,主要结论如下:传统的单一流体计算虽然可以得到相似的温度分布,但得到的温度值偏高,最大可相差50 K以上;共轭传热计算可以得到更为符合实际的结果,并且可以得到结构内部温度梯度的分布,为热应力分析及结构设计提供指导;对比相同流动条件下不同金属材料的影响,某耐高温合金的壁面温度极值比金属钢高约30 K,且其上、下壁面的温差更大,梯度更高,两材料纵向肋板位置温度梯度极值分别为120 K/cm和65 K/cm。Based on the conjugate heat transfer numerical simulation method,the wall temperature distribution of single expansion after⁃body of a high stealth unmanned aerial vehicle (UAV) was studied.The problem of excessive mesh caused by large area and thin thickness of skin and side plate structure was solved by using thin⁃walled layer mesh.A high⁃precision calculation model was constructed,and the relevant calculation and analysis was completed.The main conclusions were made as follows:although the traditional single fluid calculation can obtain similar temperature distribution,the temperature value was much higher,and the maximum difference can be more than 50 K;the results of conjugate heat transfer calculation were more practical,and could furthermore obtain the temperature gradient distribution in the structure,providing a guidance for thermal stress analysis and structural design;comparing the effects of different metal materials under the same flow conditions,the wall temperature extreme value of a high temperature resistant alloy was about 30 K higher than that of metal steel,and the temperature difference between the upper and lower walls was larger and the gradient was higher.The temperature gradient extreme values of longitudinal ribs of the two materials were 120 K/cm and 65 K/cm,respectively.
  • 流/固交界面耦合策略示意图

    1.  Schematic diagram of fluid/solid interface coupling strategy

    平板对流换热的计算网格(前缘局部)

    2.  Computational mesh of the plate convection heat transfer (local part of leading edge)

    计算结果与理论解的对比

    3.  Comparison between the calculated result and the theoretical solution

    单边膨胀喷管⁃后体型面示意图

    4.  Schematic diagram of single expansion nozzle after⁃body surface

    单边膨胀喷管⁃后体结构设计示意图

    5.  Schematic diagram of single expansion nozzle after⁃body structure design

    网格示意图(下膨胀边)

    6.  Mesh schematic diagram (the lower expansion edge)

    网格示意图(局部放大)

    7.  Mesh schematic diagram (local enlarged)

    网格示意图(对称面)

    8.  Mesh schematic diagram (symmetry surface)

    11  计算结果与某试验测试数据对比

    11.  Comparison of the calculated results with an experiment test data

    13  温度分布的对比(z/D=0截线)

    13.  Comparison of the temperature distribution (z/D=0 cutline)

    14  温度分布的对比(z/D=0.35截线)

    14.  Comparison of the temperature distribution (z/D=0.35 cutline)

    15  温度分布的对比(x/L=0.35截线)

    15.  Comparison of the temperature distribution (x/L =0.35 cutline)

    16  温度分布的对比(x/L=0.52截线)

    16.  Comparison of the temperature distribution (x/L =0.52 cutline)

    18  金属材料对温度分布的影响(z/D=0截线)

    18.  Effect of metal material on temperature distribution (z/D=0 cutline)

    19  金属材料对温度分布的影响(x/L=0.52截线)

    19.  Effect of metal material on temperature distribution (x/L =0.52 cutline)

    表1  网格参数及说明

    表1.   Mesh parameters and description

    参数数值及说明
    网格1网格2网格3网格4
    流体网格数/万455666672912
    固体网格数/万79115189360
    网格总数/万5347818611 272
    流体网格粗细较粗中间中间较细
    薄壁网格层数3357
    下载: 导出CSV
  • [1] NANGIAR KPALMERM EA comparative study of UCAV type wing platforms‑aero performance and stability considerations⁃50782005

    NANGIAR K,PALMERM E.A comparative study of UCAV type wing platforms‑aero performance and stability considerations [R].AIAA 2005⁃5078,2005.

    [2] 徐啟云,王洁,郝文渊,等.国外无人战斗机发展历程和趋势[J].飞航导弹,2016(3):28⁃32.

    XUQiyun,WANGJie,HAOWenyuan,et al.Development history and trend of foreign UCAVs[J].Aerodynamic Missile Journal,2016(3):28⁃32.(in Chinese)
    [3] 马怡,潘志雄,罗烈.X⁃47B飞翼气动布局设计分析[J].航空科学技术,2014,25(12):1⁃4.

    MAYi,PANZhixiong,LUOLie.X⁃47B flying wing aerodynamic configuration analysis[J].Aeronautical Science and Technology,2014,25(12):1⁃4.(in Chinese)
    [4] 魏国福,周军,邢娅.欧洲神经元无人攻击机发展历程[J].飞航导弹,2013(8):23⁃26.

    WEIGuofu,ZHOUJun,XINGYa.The development of European neuron unmanned attack aircraft[J].Aerodynamic Missile Journal,2013(8):23⁃26.(in Chinese)
    [5] 潘金宽.俄军重型无人机发展现状[J].军事文摘,2019(9):24⁃27.

    PANJinkuan.Development status of Russian heavy UAV [J].Military Digest,2019(9):24⁃27.(in Chinese)
    [6] 金捷,廖华琳,朱谷君,等.轴对称矢量喷管三维传热计算研究[J].燃气涡轮试验与研究,2002,15(2):4⁃7.

    JINJie,LIAOHualin,ZHUGujun,et al.A numerical investigation of 3D heat transfer for axisymmetric vectoring exhaust nozzle[J].Gas Turbine Experiment and Research,2002,15(2):4⁃7.(in Chinese)
    [7] 廖华琳,陈徐屹,张小英.矢量喷管内燃气辐射与壁面温度的耦合计算[J].航空动力学报,2016,31(3):581⁃587.

    LIAOHualin,CHENXuqi,ZHANGXiaoying.Coupled simulation of gas radiation and wall temperature in vectored nozzle[J].Journal of Aerospace Power,2016,31(3):581‑587.(in Chinese)
    [8] 刘友宏,李江宁,才娟.考虑导热对流和辐射作用的轴对称收扩喷管壁温计算[J].航空动力学报,2008,23(4):635⁃635.

    LIUYouhong,LIJiangning,CAIJuan.Wall temperature calculation on an axi‑symmetrical converging⁃diverging nozzle considering heat conduction convection and radiation[J].Journal of Aerospace Power,2008,23(4):635⁃635.(in Chinese)
    [9] 单勇,陈著,尚守堂,等.与飞机融合的单边膨胀喷管排气系统气动和红外辐射特征数值计算[J].航空发动机,2014,40(2):1⁃5.

    SHANYong,CHENZhu,SHANGShoutang,et al.Aerodynamic and infrared radiation characteristics numerical simulation on single expansion ramp nozzle within aircraft[J].Aeroengine,2014,40(2):1⁃5.(in Chinese)
    [10] ZHANGXiaoluoStudy on aerodynamic performance and infrared radiation characteristics of single expansion ramp nozzle with secondary flowHarbinHarbin Institute of Technology2019(in Chinese)

    ZHANGXiaoluo.Study on aerodynamic performance and infrared radiation characteristics of single expansion ramp nozzle with secondary flow[D].Harbin:Harbin Institute of Technology,2019.(in Chinese)

    [11] 韩非,刘宇.轴对称喷管与圆转方喷管冷却换热特性的比较 [J].航空动力学报,2007,22(11):1947⁃1953.

    HANFei,LIUYu.Heat transfer characteristics of axis⁃symmetrical nozzle and RS nozzle[J].Journal of Aerospace Power,2007,22(11):1947⁃1953.(in Chinese)
    [12] MARINEAUE CSCHETZJ ANEELR ETurbulent Navier⁃Stokes simulations of heat transfer with complex wall temperature variationsAIAA⁃2006⁃30872006

    MARINEAUE C,SCHETZJ A,NEELR E.Turbulent Navier⁃Stokes simulations of heat transfer with complex wall temperature variations[R].AIAA⁃2006⁃3087,2006.

    [13] MANY H,MIJ J.A numerical study on three⁃dimensional conjugate heat transfer of natural convection and conduction in a differentially heated cubic enclosure with a heat⁃generating cubic conducting body[J].International Journal of Heat and Mass Transfer,2000,43(23):4229⁃4248.
    [14] LIWCHIZKANRet alExperimental investigation of heat transfer dependency on conjugate and convective thermal boundary conditions in pin fin channelMontreal,CanadaASME Turbo Expo:Turbine Technical Conference and Exposition2015

    LIW,CHIZ,KANR,et al.Experimental investigation of heat transfer dependency on conjugate and convective thermal boundary conditions in pin fin channel[R].Montreal,Canada:ASME Turbo Expo:Turbine Technical Conference and Exposition,2015.

    [15] MANY H,MIJ J.A numerical study on three⁃dimensional conjugate heat transfer of natural convection and conduction in a differentially heated cubic enclosure with a heat⁃generating cubic conducting body[J].International Journal of Heat and Mass Transfer,2000,43(23):4229⁃4248.
    [16] MENSCHA,THOLEK A,CRAVENB A.Conjugate heat transfer measurements and predictions of a blade endwall with a thermal barrier coating[J].Journal of Turbomachinery,2014,136(12):121003.1⁃121003.11
    [17] INSINNAMGRIFFINIDSALVADORISet alConjugate heat transfer analysis of a film cooled high⁃pressure turbine vane under realistic combustor exit flow conditionsDüsseldorf,GermanASME Turbo Expo2014

    INSINNAM,GRIFFINID,SALVADORIS,et al.Conjugate heat transfer analysis of a film cooled high⁃pressure turbine vane under realistic combustor exit flow conditions[R].Düsseldorf,German:ASME Turbo Expo,2014.

    [18] 李虹杨,王霄,孙超,等.喷流作用下的单边膨胀后体气动载荷研究[J].航空学报,2021,42(8):525797.1⁃525797.11.

    LIHongyang,WANGXiao,SUNChao,et al.Aerodynamic load of unilateral expanded after⁃body under jet effect[J].Acta Aeronautica et Astronautica Sinica,2021,42(8):525797.1⁃525797.11.(in Chinese)
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  47
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-04
  • 网络出版日期:  2022-09-06
  • 刊出日期:  2022-08-28

目录

    /

    返回文章
    返回