留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冰晶粒子运动过程中的相变特性

黄平 卜雪琴 林贵平 郁嘉

黄平,卜雪琴,林贵平,等.冰晶粒子运动过程中的相变特性[J].航空动力学报,2022,37(7):1379‑1391. doi: 10.13224/j.cnki.jasp.20210484
引用本文: 黄平,卜雪琴,林贵平,等.冰晶粒子运动过程中的相变特性[J].航空动力学报,2022,37(7):1379‑1391. doi: 10.13224/j.cnki.jasp.20210484
HUANG Ping,BU Xueqin,LIN Guiping,et al.Phase transition characteristics of ice crystal particles in motion[J].Journal of Aerospace Power,2022,37(7):1379‑1391. doi: 10.13224/j.cnki.jasp.20210484
Citation: HUANG Ping,BU Xueqin,LIN Guiping,et al.Phase transition characteristics of ice crystal particles in motion[J].Journal of Aerospace Power,2022,37(7):1379‑1391. doi: 10.13224/j.cnki.jasp.20210484

冰晶粒子运动过程中的相变特性

doi: 10.13224/j.cnki.jasp.20210484
基金项目: 

结冰与防除冰重点实验室开放课题 IADL20210102

国家重点研发计划 2021YFB2601700

国家科技重大专项(2017⁃Ⅷ⁃0003⁃0114) 

详细信息
    作者简介:

    黄平(1997-),男,博士生,研究方向为飞机和发动机结冰与防除冰。

    通讯作者:

    卜雪琴(1982-),女,教授、博士生导师,博士,研究方向为飞机和发动机结冰与防除冰。E⁃mail:buxueqin@buaa.edu.cn

  • 中图分类号: V233.94

Phase transition characteristics of ice crystal particles in motion

  • 摘要: 针对冰晶在温暖环境下运动时固液汽耦合的相变现象,基于欧拉法建立了冰晶粒子的运动相变模型和计算方法。计算了冰晶粒子在强迫对流环境下的融化相变过程,与实验结果对比验证了运动相变模型和计算方法的准确性。针对NACA0012翼型计算了冰晶绕流运动时的热力学特性,得到了冰晶粒子到达撞击表面时的融化状态与收集系数。研究了冰晶粒径大小、初始球形度、气流相对湿度和温度对运动相变的影响。结果表明:冰晶粒子运动相变模型可以有效地评估冰晶结冰风险,冰晶粒子的融化速率主要取决于粒子直径、球形度、气流温度、湿度等因素,环境温度为288 K时冰晶粒子的融化时间为27.5 s,而相同条件下环境温度为302 K时的融化时间仅有5.2 s。

     

    针对冰晶在温暖环境下运动时固液汽耦合的相变现象,基于欧拉法建立了冰晶粒子的运动相变模型和计算方法。计算了冰晶粒子在强迫对流环境下的融化相变过程,与实验结果对比验证了运动相变模型和计算方法的准确性。针对NACA0012翼型计算了冰晶绕流运动时的热力学特性,得到了冰晶粒子到达撞击表面时的融化状态与收集系数。研究了冰晶粒径大小、初始球形度、气流相对湿度和温度对运动相变的影响。结果表明:冰晶粒子运动相变模型可以有效地评估冰晶结冰风险,冰晶粒子的融化速率主要取决于粒子直径、球形度、气流温度、湿度等因素,环境温度为288 K时冰晶粒子的融化时间为27.5 s,而相同条件下环境温度为302 K时的融化时间仅有5.2 s。In view of the phase transition phenomenon of solid⁃liquid⁃vapor coupling when ice crystals moved in a warm environment,the phase transition model and calculation method of ice crystals were established based on Eulerian method.The melting phase transition processes of ice crystals under forced convection were calculated,and the comparison with the experimental results verified the accuracy of the movement phase transition model and calculation method.The thermodynamic characteristics of ice crystals moving around the NACA0012 airfoil were calculated,and the motion characteristics of ice crystals in a warm environment and the melting ratio were analyzed when they reached the impact surface.The influences of initial particle size,initial particle sphericity,air relative humidity and temperature on the movement phase transition were studied.The results showed that the ice crystal particle movement phase transition model can effectively evaluate the ice crystal icing risk,and the melting rate of ice crystal particles mainly counted on the particle diameter,sphericity,airflow temperature and humidity.When the air temperature was 288 K,the melting time of ice crystal particles was 27.5 s,while the melting time was only 5.2 s when the air temperature was 302 K under the same conditions.
  • 图  非球形冰晶粒子融化过程中形状的演变

    Figure  1.  Shape evolution of non⁃spherical ice particle during melting process

    图  冰粒子融化过程中三个阶段

    Figure  2.  Three stages of ice particle melting process

    图  计算域网格

    Figure  3.  Computational domain mesh

    图  融化时间计算值和实验值的对比

    Figure  4.  Comparison between computation and experiment values of melting time

    图  完全融化后粒径计算值与实验值的对比

    Figure  5.  Comparison between computation and experiment values of particle size after complete melting

    图  粒子温度随时间的变化

    Figure  6.  Variation of particle temperature with time

    图  固态冰和液态水的体积分数随时间的变化

    Figure  7.  Variation of volume fraction of solid ice and liquid water with time

    图  计算域网格划分

    Figure  8.  Computational domain mesh

    图  不同底层网格厚度时表面压力结果对比

    Figure  9.  Comparison of pressure results with different bottom mesh thickness

    图  10  粒子总的体积分数云图

    Figure  10.  Contours of particle total volume fraction

    图  11  固态冰的体积分数云图

    Figure  11.  Contours of solid ice volume fraction

    图  12  液态水的体积分数云图

    Figure  12.  Contours of liquid water volume fraction

    图  13  冰晶粒子局部收集系数

    Figure  13.  Local collection coefficient of ice crystals

    图  14  机翼前缘冰晶融化率

    Figure  14.  Melting rate of ice crystals at the leading edge of the wing

    图  15  融化时间与初始粒径大小的关系

    Figure  15.  Relationship between melting time and initial particle size

    图  16  蒸发占比与初始粒径大小的关系

    Figure  16.  Relationship between evaporation ratio and initial particle size

    图  17  融化时间与粒子球形度的关系

    Figure  17.  Relationship between melting time and particle sphericity

    图  18  蒸发占比与粒子球形度的关系

    Figure  18.  Relationship between evaporation ratio and particle sphericity

    图  19  融化时间与气流相对湿度的关系

    Figure  19.  Relationship between melting time and air relative humidity

    图  20  蒸发占比与气流相对湿度的关系

    Figure  20.  Relationship between evaporation ratio and air relative humidity

    图  21  融化时间与气流温度关系

    Figure  21.  Relationship between melting time and air temperature

    图  22  蒸发占比与气流温度关系

    Figure  22.  Relationship between evaporation ratio and air temperature

    表  1  Hauk实验条件

    Table  1.   Hauk's experimental conditions

    算例气流速度/(m/s)气流温度/K相对湿度/%环境压力/Pa初始温度/K粒子球形度粒径/μm
    11293.2494 900256.41715
    21293.2494 900256.41994
    31292.8495 870255.50.7551
    41293.1494 9002570.841 071
    51.25293.2497 2002571915
    60.75288.26495 100256.41775
    70.75288.26495 100256.91591
    80.75288.36195 3002560.49690
    91293.27594 900256.211 013
    101293.27594 900256.51978
    111293.27895 600257.90.781 013
    下载: 导出CSV
  • [1] MASONJ GSTRAPPJ WCHOWPThe ice particle threat to engines in flight⁃2062006

    MASON J G,STRAPP J W,CHOW P.The ice particle threat to engines in flight[R].AIAA 2006⁃206,2006.

    [2] 陈光.GEnx 发动机结冰问题初探[J].国际航空,2014(2):72⁃73.

    CHEN Guang.Discussion on GEnx engine icing[J].International Aviation,2014(2):72⁃73.(in Chinese)
    [3] MASON J G,CHOW P,FULEKI D M.Understanding ice crystal accretion and shedding phenomenon in jet engines using a rig test[J].Journal of Engineering for Gas Turbines and Power,2011,133(4):1⁃8.
    [4] 刘增承关于发动机内部结冰的探讨北京全国飞行技术和飞行安全研讨会2000

    刘增承.关于发动机内部结冰的探讨[R].北京:全国飞行技术和飞行安全研讨会,2000.

    [5] CURRIET CSTRUKP MTSAOJ Cet alFundamental study of mixed⁃phase icing with application to ice crystal accretion in aircraft jet engines2035

    CURRIE T C,STRUK P M,TSAO J C,et al.Fundamental study of mixed⁃phase icing with application to ice crystal accretion in aircraft jet engines[R].AIAA 2012⁃2035,2012.

    [6] CURRIET CFULEKIDMAHALLATIAExperimental studies of mixed⁃phase sticking efficiency for ice crystal accretion in jet engines⁃30492014

    CURRIE T C,FULEKI D,MAHALLATI A.Experimental studies of mixed⁃phase sticking efficiency for ice crystal accretion in jet engines[R].AIAA 2014⁃3049,2014.

    [7] STRUKP MBARTKUSTTSAOJ Cet alIce accretion measurements on an airfoil and wedge in mixed⁃phase conditionsSAE Paper 2015⁃01⁃21162015

    STRUK P M,BARTKUS T,TSAO J C,et al.Ice accretion measurements on an airfoil and wedge in mixed⁃phase conditions[R].SAE Paper 2015⁃01⁃2116,2015.

    [8] CURRIET CFULEKIDExperimental results for ice crystal icing on hemispherical and double wedge geometries at varying mach numbers and wet bulb temperatures⁃37402016

    CURRIE T C,FULEKI D.Experimental results for ice crystal icing on hemispherical and double wedge geometries at varying mach numbers and wet bulb temperatures[R].AIAA 2016⁃3740,2016.

    [9] LIBBRECHT K G.The physics of snow crystals[J].Reports on Progress in Physics,2005,68(4):855⁃895.
    [10] HAUKTROISMANI VTROPEAC DInvestigation of the melting behaviour of ice particles in an acoustic levitator⁃22612014

    HAUK T,ROISMAN I V,TROPEA C D.Investigation of the melting behaviour of ice particles in an acoustic levitator[R].AIAA 2014⁃2261,2014.

    [11] HAUK T,BONACCURSO E,VILLEDIEU P,et al.Theoretical and experimental investigation of the melting process of ice particles[J].Journal of Thermophysics & Heat Transfer,2016,30(4):946⁃954.
    [12] HAUKTInvestigation of the impact and melting process of ice particlesMünchen,GermanyTechnische Universität Darmstadt2016

    HAUK T.Investigation of the impact and melting process of ice particles[D].München,Germany:Technische Universität Darmstadt,2016.

    [13] AYANEOZGENSMURATCet alPrediction of ice crystal accretion with TAICESAE Paper 2015⁃01⁃21482015

    AYAN E,OZGEN S,MURAT C,et al.Prediction of ice crystal accretion with TAICE[R].SAE Paper 2015⁃01⁃2148,2015.

    [14] GRIFTENORDEEDEREet alComputational method for ice crystal trajectories in a turbofan compressorSAE Paper 2015⁃01⁃21392015

    GRIFT E,NORDE E,DER E,et al.Computational method for ice crystal trajectories in a turbofan compressor[R].SAE Paper 2015⁃01⁃2139,2015.

    [15] AOUIZERATEGCHARTONVBALLANDMet alIce crystals trajectory calculations in a turbofan engine⁃41302018

    AOUIZERATE G,CHARTON V,BALLAND M,et al.Ice crystals trajectory calculations in a turbofan engine[R].AIAA 2018⁃4130,2018.

    [16] 卜雪琴,李皓,黄平,等.二维机翼混合相结冰数值模拟[J].航空学报,2020,41(12):200⁃210.

    BU Xueqin,LI Hao,HUANG Ping,et al.Numerical simulation of mixed phase icing on two⁃dimensional airfoil[J].Acta Aeronautica et Astronautica Sinica,2020,41(12):200⁃210.(in Chinese)
    [17] IULIANOEMONTREUIENORDEEet alModelling of non⁃spherical particle evolution for ice crystals simulation with an Eulerian approachSAE Paper 2015⁃01⁃21382015

    IULIANO E,MONTREUI E,NORDE E,et al.Modelling of non⁃spherical particle evolution for ice crystals simulation with an Eulerian approach[R].SAE Paper 2015⁃01⁃2138,2015.

    [18] VILLEDIEUPTRONTINPCHAUVINRGlaciated and mixed phase ice accretion modeling using ONERA 2D icing suite⁃21992014

    VILLEDIEU P,TRONTIN P,CHAUVIN R.Glaciated and mixed phase ice accretion modeling using ONERA 2D icing suite[R].AIAA 2014⁃2199,2014.

    [19] TRONTINPBLANCHARDGVILLEDIEUPA comprehensive numerical model for mixed⁃phase and glaciated icing conditions⁃37422016

    TRONTIN P,BLANCHARD G,VILLEDIEU P.A comprehensive numerical model for mixed⁃phase and glaciated icing conditions[R].AIAA 2016⁃3742,2016.

    [20] NORDE E,SENONER J M,VAN D,et al.Eulerian and Lagrangian ice⁃crystal trajectory simulations in a generic turbofan compressor[J].Journal of Propulsion and Power,2019,35(1):26⁃40.
    [21] NORDEEEulerian method for ice crystal icing in turbofan enginesEnschede,The NetherlandsUniversity of Twente2017

    NORDE E.Eulerian method for ice crystal icing in turbofan engines[D].Enschede,The Netherlands:University of Twente,2017.

    [22] GANSER G H.A rational approach to drag prediction of spherical and nonspherical particles[J].Powder Technology,1993,77(2):143⁃152.
    [23] MASON B J.On the melting of hailstones[J].Quarterly Journal of the Royal Meteorological Society,1956,82(352):209‑216.
    [24] CROWE C T,SOMMERFELD M,TSUJI Y.Multiphase flows with droplets and particles[M].Boca Raton,US:CRC Press,2011.
    [25] SONNTAG D.Important new values of the physical constants of 1986,vapour pressure formulations based on the ITS⁃90,and psychrometer formulae[J].Zeitschrift für Meteorologie,1990,40(5):340⁃344.
    [26] 杨胜华,林贵平,申晓斌.三维复杂表面水滴撞击特性计算[J].航空动力学报,2010,25(2):284⁃290.

    YANG Shenghua,LIN Guiping,SHEN Xiaobin.Calculation of water droplet impact characteristics on three⁃dimensional complex surface[J].Journal of Aeronautical power,2010,25(2):284⁃290.(in Chinese)
    [27] 申晓斌,林贵平,杨胜华.三维发动机进气道水滴撞击特性分析[J].北京航空航天大学学报,2011,37(1):1⁃5.

    SHEN Xiaobin,LIN Guiping,YANG Shenghua.Analysis of water droplet impact characteristics in three⁃dimensional engine inlet[J].Journal of Beijing University of Aeronautics and Astronautics,2011,37(1):1⁃5.(in Chinese)
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  288
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-02
  • 网络出版日期:  2022-09-06
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回