留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

后排转子直径对对转螺旋桨气动和声学特性的影响

崔盼望 仝帆 冯和英 陈正武 王大庆

崔盼望,仝帆,冯和英,等.后排转子直径对对转螺旋桨气动和声学特性的影响[J].航空动力学报,2022,37(8):1749‑1760. doi: 10.13224/j.cnki.jasp.20220179
引用本文: 崔盼望,仝帆,冯和英,等.后排转子直径对对转螺旋桨气动和声学特性的影响[J].航空动力学报,2022,37(8):1749‑1760. doi: 10.13224/j.cnki.jasp.20220179
CUI Panwang,TONG Fan,FENG Heying,et al.Influence of rear rotor diameter on aerodynamic and acoustic characteristics of counter⁃rotating proeller[J].Journal of Aerospace Power,2022,37(8):1749‑1760. doi: 10.13224/j.cnki.jasp.20220179
Citation: CUI Panwang,TONG Fan,FENG Heying,et al.Influence of rear rotor diameter on aerodynamic and acoustic characteristics of counter⁃rotating proeller[J].Journal of Aerospace Power,2022,37(8):1749‑1760. doi: 10.13224/j.cnki.jasp.20220179

后排转子直径对对转螺旋桨气动和声学特性的影响

doi: 10.13224/j.cnki.jasp.20220179
基金项目: 

国家自然科学基金项目 12102451

湖南省教育厅优秀青年基金 20B226

详细信息
    作者简介:

    崔盼望(1996-),男,硕士生,主要从事叶轮机械气动噪声控制研究。

    通讯作者:

    仝帆(1990-),男,高级工程师,博士,主要研究方向为叶轮机械气动声学、仿生降噪技术。E⁃mail:tongfan@cardc.cn

  • 中图分类号: V211.3

Influence of rear rotor diameter on aerodynamic and acoustic characteristics of counter⁃rotating proeller

  • 摘要: 基于非线性谐波法和声类比模型,研究了不同后排转子直径对对转螺旋桨气动特性和噪声的影响规律。首先,利用单排螺旋桨风洞试验结果验证了数值计算方法的可靠性。随后,以某型对转螺旋桨为研究对象,研究了6种具有不同后排转子直径的对转螺旋桨模型。研究发现,对转螺旋桨后排转子直径“裁剪”会降低后排螺旋桨的拉力系数和功率系数,但对效率的影响不明显。随着后排转子直径的减小,前排转子的叶片通过频率下的噪声几乎没有变化,但高阶噪声变化幅度较大。后排转子减小0.25倍直径,后排转子的叶片通过频率下的噪声降低约为9 dB。后排转子直径“裁剪”不仅可以降低后排转子噪声,在一定程度上也可以降低前排转子的噪声。通过叶片“裁剪”,对转螺旋桨气动噪声降低5~6 dB。对转螺旋桨后排转子直径的减小,减弱了对转螺旋桨叶尖涡干涉和尾迹干涉,并减弱了前后排桨叶的势流场干涉,进而降低了对转螺旋桨的噪声辐射。

     

    基于非线性谐波法和声类比模型,研究了不同后排转子直径对对转螺旋桨气动特性和噪声的影响规律。首先,利用单排螺旋桨风洞试验结果验证了数值计算方法的可靠性。随后,以某型对转螺旋桨为研究对象,研究了6种具有不同后排转子直径的对转螺旋桨模型。研究发现,对转螺旋桨后排转子直径“裁剪”会降低后排螺旋桨的拉力系数和功率系数,但对效率的影响不明显。随着后排转子直径的减小,前排转子的叶片通过频率下的噪声几乎没有变化,但高阶噪声变化幅度较大。后排转子减小0.25倍直径,后排转子的叶片通过频率下的噪声降低约为9 dB。后排转子直径“裁剪”不仅可以降低后排转子噪声,在一定程度上也可以降低前排转子的噪声。通过叶片“裁剪”,对转螺旋桨气动噪声降低5~6 dB。对转螺旋桨后排转子直径的减小,减弱了对转螺旋桨叶尖涡干涉和尾迹干涉,并减弱了前后排桨叶的势流场干涉,进而降低了对转螺旋桨的噪声辐射。Based on the nonlinear harmonic method and the acoustic analogy model,the influence of different rear rotor diameters on the aerodynamic and acoustic characteristics of the counter⁃rotating propeller was studied.First,the reliability of the numerical calculation method was verified by the wind tunnel test results of a single propeller.Subsequently,six counter⁃rotating propeller models with different rear rotor diameters were studied for a counter⁃rotating propeller.It was found that the clipping of the diameter of the rear rotor of the counter⁃rotating propeller could reduce the pull coefficient and power coefficient of the rear propeller,but the effect on the efficiency was not obvious.As the diameter of the rear rotor decreased,the noise of the front rotor at the blade passing frequency changed little,but the higher order noise changed more.When the diameter of the rear rotor was reduced by 0.25 times of the diameter,the noise of the blade passing frequency of the rear rotor was reduced by about 9 dB.The clipping of the diameter of the rear rotor can not only reduce the noise of the rear rotor,but also reduce the noise of the front rotor to a certain extent.By clipping the blades,the aerodynamic noise of the counter⁃rotating propeller was reduced by 5~6 dB.The reduction of the diameter of the rear rotor weakened the tip vortex interference and wake interference of the counter⁃rotating propeller,and also mitigated the potential flow field interference between the front and rear blades,which in turn reduced the noise radiation of the counter⁃rotating propeller.
  • 原始对转螺旋桨布局

    1.  Layout of original counter⁃rotating propeller

    后排转子直径示意图

    2.  Sketch of diameter of rear rotor

    基准对转螺旋桨气动性能

    6.  Aerodynamic performance of baseline counter⁃rotating propeller

    不同后排转子直径下前排转子的气动性能

    7.  Aerodynamic performance of front rotor under different rear rotor diameters

    不同后排转子直径下后排转子的气动性能

    8.  Aerodynamic performance of rear rotor under different rear rotor diameters

    不同后排转子直径下对转螺旋桨的气动性能

    9.  Aerodynamic performance of counter⁃rotating propeller under different rear rotor diameters

    10  不同后排转子直径下的对转螺旋桨叶尖涡干涉对比

    10.  Comparison of tip vortex interference of counter⁃rotating propeller under different rear rotor diameters

    11  不同后排转子直径下对转螺旋桨纵向截面涡量分布对比

    11.  Comparison of vorticity distribution in longitudinal section of counter⁃rotating propeller under different rear rotor diameters

    12  观察点位置

    12.  Observer location

    13  基准对转螺旋桨噪声特性对比

    13.  Comparison of acoustic characteristics of baseline counter⁃rotating propeller

    14  观察点A的前排转子噪声

    14.  Noise at observer A radiated from front rotor

    15  前排转子的总声压级指向性分布

    15.  Directivity distribution of total sound pressure level of front rotor

    16  观察点A的后排转子噪声

    16.  Noise at observer A radiated from rear rotor

    17  后排转子的总声压级指向性分布

    17.  Directivity distribution of total sound pressure level of rear rotor

    18  后排转子压力面1阶谐波压力幅值分布

    18.  Distribution of 1st harmonic pressure amplitude on pressure side of rear rotor

    19  后排转子吸力面1阶谐波压力幅值分布

    19.  Distribution of 1st harmonic pressure amplitude on suction side of rear rotor

    20  对转螺旋桨总声压级指向性分布

    20.  Directivity distribution of overall sound pressure level of counter⁃rotating propeller

    21  对转螺旋桨总声压级指向性分布

    21.  Directivity distribution of overall sound pressure level of counter⁃rotating propeller

    表1  原始对转螺旋桨参数

    表1.   Parameters of origin counter⁃rotating propeller

    参数数值
    前排转子后排转子
    叶片数66
    转速/(r/min)1 075-1 075
    直径/m3.953.95
    下载: 导出CSV

    表2  气动力计算的网格无关性验证

    表2.   Mesh independence verification for aerodynamic performance calculation

    网格数前排推力/N后排推力/N前排误差/%后排误差/%
    600万-558.78-618.000.151.44
    1 000万-559.56-625.800.110.19
    1 300万-559.62-627.00
    2 000万-558.30-627.600.230.10
    下载: 导出CSV

    表3  气动力结果分析对比

    表3.   Analysis and comparison of aerodynamic results

    工况前排扭矩/(N·m)后排扭矩/(N·m)前排推力/N后排推力/N
    Aft_D-72.5485.02-559.62-627.00
    Aft_0.75D_40°-71.88101.40-552.24-626.40
    下载: 导出CSV
  • [1] MOENS FGARDAREIN PNumerical simulation of the propeller/wing interactions for transport aircraftAIAA⁃2001⁃24042001

    MOENSF,GARDAREINP.Numerical simulation of the propeller/wing interactions for transport aircraft[R].AIAA⁃2001⁃2404,2001.

    [2] KELLERD,RUDNIKR.Numerical investigation of engine effects on a transport aircraft with circulation control[J].Journal of Aircraft,2015,52(2):421⁃438.
    [3] VAN DEN BORNE P C MHENGST J VInvestigation of propeller slipstream effects on the Fokker 50 through inflight pressure measurementsAIAA⁃90⁃30841990

    VAN DEN BORNEP C M,HENGSTJ V.Investigation of propeller slipstream effects on the Fokker 50 through inflight pressure measurements[R].AIAA⁃90⁃3084,1990.

    [4] KINGANM J,PARRYA B.Acoustic theory of the many⁃bladed contra⁃rotating propeller:the effects of sweep on noise enhancement and reduction[J].Journal of Sound and Vibration,2020,468:89⁃115.
    [5] PARRYA B,KINGANM J.Acoustic theory of the many⁃bladed contra⁃rotating propeller:physics of the wake interaction noise critical sources[J].Journal of Fluid Mechanics,2019,880:1⁃12.
    [6] SMITHD J.The sustainable and green engine (SAGE):aircraft engine of the future?[J].The International Journal of Entrepreneurship and Innovation,2016,17(4):256⁃262.
    [7] EKOULE C MAdvanced open rotor far⁃field tone noiseSouthampton,UKUniversity of Southampton2017

    EKOULEC M.Advanced open rotor far⁃field tone noise[D].Southampton,UK:University of Southampton,2017.

    [8] HAGER R DVRABEL DAdvanced turboprop projectNASA SP⁃4951988

    HAGERR D,VRABELD.Advanced turboprop project[R].NASA SP⁃495,1988.

    [9] WHITLOW J BSIEVERS G KNASA advanced turboprop research and concept validation programNASA TM⁃1008911988

    WHITLOWJ B,SIEVERSG K.NASA advanced turboprop research and concept validation program[R].NASA TM⁃100891,1988.

    [10] HORVÁTHC,ENVIAE,PODBOYG G.Limitations of phased array beamforming in open rotor noise source imaging[J].AIAA Journal,2014,52(8):1810⁃1817.
    [11] 孙晓峰,胡宗安.桨扇的气动弹性力学和气动声学[J].航空动力学报,1987,2(4):299⁃302.

    SUNXiaofeng,HUZongan.On aeroelasticity and aeroacoustics of propfan[J].Journal of Aerospace Power,1987,2(4):299⁃302.(in Chinese)
    [12] 李晓东,孙晓峰,胡宗安,等.考虑飞机舱壁影响的螺旋桨声场时域预测法[J].航空学报,1993,14(11):585⁃591.

    LIXiaodong,SUNXiaofeng,HUZongan,et al.A time domain method for propeller noise prediction including aircraft fuselage effect[J].Acta Aeronautica et Astronautica Sinica,1993,14(11):585⁃591.(in Chinese)
    [13] 刘沛清.空气旋桨理论及其应用[M].北京:北京航空航天大学出版社,2006.
    [14] 严成忠.开式转子发动机[M].北京:航空工业出版社,2016.
    [15] 夏贞锋,杨永.对转开式转子非定常气动干扰特性分析[J].航空动力学报,2014,29(4):835⁃843.

    XIAZhenfeng,YANGYong.Characteristic analysis of unsteady aerodynamic interactions of control rotating open rotor[J].Journal of Aerospace Power,2014,29(4):835⁃843.(in Chinese)
    [16] 史文博,李杰.对转螺旋桨流场气动干扰数值模拟[J].航空动力学报,2019,34(4):829⁃837.

    SHIWenbo,LIJie.Numerical simulation of contra⁃rotating propeller flowfield aerodynamic interactions[J].Journal of Aerospace Power,2019,34(4):829⁃837.(in Chinese)
    [17] 闫文辉,汤斯佳,王奉明,等.共轴对转螺旋桨的非定常气动干扰[J].航空动力学报,2021,36(7):1398⁃1405.

    YANWenhui,TANGSijia,WANGFengming,et al.Unsteady aerodynamic interactions of contra rotating propeller[J].Journal of Aerospace Power,2021,36(7):1398⁃1405.(in Chinese)
    [18] PETERSA,SPAKOVSZKYZ S.Rotor interaction noise in counter‑rotating propfan propulsion systems[J].Journal of Turbomachinery,2012,134(1):011002.1⁃011002.12.
    [19] WOODWARDR P.Noise of two high⁃speed model counter⁃rotating propellers at takeoff/approach conditions[J].Journal of Aircraft,1992,29(4):679⁃685.
    [20] KHALID S AWOJNO J PLURIE D POpen rotor designs for low noise and high efficiencyASME Paper GT2013⁃947362013

    KHALIDS A,WOJNOJ P,LURIED P.Open rotor designs for low noise and high efficiency[R].ASME Paper GT2013⁃94736,2013.

    [21] ELSON TComputational aerodynamics for open rotor tip vortex interaction noise predictionCranfield,UKCranfield University2015

    ELSONT.Computational aerodynamics for open rotor tip vortex interaction noise prediction[D].Cranfield,UK:Cranfield University,2015.

    [22] KHALID S ALURIE DBREEZE⁃STRINGFELLOW Aet alOpen rotor engine aeroacoustic technology final reportDOT/FAA/AEE/2014⁃042013

    KHALIDS A,LURIED,BREEZE⁃STRINGFELLOWA,et al.Open rotor engine aeroacoustic technology final report[R].DOT/FAA/AEE/2014⁃04,2013.

    [23] VANZANTE DPrevious open rotor research in the USLausanne,SwitzerlandEuropean Union X⁃Noise Seminar2011

    VANZANTED.Previous open rotor research in the US[R].Lausanne,Switzerland:European Union X⁃Noise Seminar,2011.

    [24] 周莉,是介,王占学.开式转子发动机研究进展[J].推进技术,2019,40(9):1921⁃1932.

    ZHOULi,SHIJie,WANGZhanxue.Research progress in open rotor engine[J].Journal of Propulsion Technology,2019,40(9):1921⁃1932.(in Chinese)
    [25] DITTMAR J HSTANG D BNoise reduction for model counter⁃rotating propeller at cruise by reducing aft⁃propeller diameterIndianapolis,US113th Meeting of the Acoustical Society of America1987

    DITTMARJ H,STANGD B.Noise reduction for model counter⁃rotating propeller at cruise by reducing aft⁃propeller diameter[R].Indianapolis,US:113th Meeting of the Acoustical Society of America,1987.

    [26] 赵帅,段卓毅,李杰,等.涡桨飞机螺旋桨滑流气动干扰效应及流动机理[J].航空学报,2019,40(4):163⁃174.

    ZHAOShuai,DUANZhuoyi,LIJie,et al.Interference effects and flow mechanism of propeller slipstream for turboprop aircraft[J].Acta Aeronautica et Astronautica Sinica,2019,40(4):163⁃174.(in Chinese)
    [27] 王科雷,祝小平,周洲,等.低雷诺数分布式螺旋桨滑流气动影响[J].航空学报2016,37(9):2669⁃2678.

    WANGKelei,ZHUXiaoping,ZHOUZhou,et al.Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J].Acta Aeronautica et Astronautica Sinica,2016,37(9):2669⁃2678.(in Chinese)
    [28] 许和勇,叶正寅.螺旋桨非定常滑流数值模拟[J].航空动力学报,2011,26(1):148⁃153.

    XUHeyong,YEZhengyin.Numerical simulation of unsteady propeller slip stream[J].Journal of Aerospace Power,2011,26(1):148⁃153.(in Chinese)
    [29] 杨小川,王运涛,王光学,等.螺旋桨非定常滑流的高效数值模拟研究[J].空气动力学报,2014,32(3):289⁃294.

    YANGXiaochuan,WANGYuntao,WANGGuangxue,et al.Numerical simulation of unsteady propeller slipstream[J].Acta Aerodynamic Sinica,2014,32(3):289⁃294.(in Chinese)
    [30] 李鹏,招启军.倾转旋翼典型飞行状态气动特性的CFD分析[J].航空动力学报,2016,31(2):421⁃431.

    LIPeng,ZHAOQijun.CFD analyses of aerodynamic characteristics of tilt⁃rotor under typical flight conditions[J].Journal of Aerospace Power,2016,31(2):421⁃431.(in Chinese)
    [31] 王顺杰,程玉胜,高鑫.水下对转螺旋桨空化线谱频率预报与数值模拟[J].兵工学报,2013,34(3):310⁃317.

    WANGShunjie,CHENGYusheng,GAOXin.Prediction and numerical simulation of cavitation noise line‑spectrum frequency induced by underwater counter⁃rotation propeller[J].Acta Armamentarii,2013,34(3):310⁃317.(in Chinese)
    [32] 曾赛,杜选民,范威.水下对转桨非空化线谱噪声分析与数值研究[J].兵工学报,2015,36(6):1052⁃1060.

    ZENGSai,DUXuanmin,FANWei.Numerical simulation and analysis of non⁃cavitation noise line⁃spectrum frequency of underwater counter⁃rotation propeller[J].Acta Armamentarii,2015,36(6):1052⁃1060.(in Chinese)
    [33] 王雷,刘波.非线性谐波法在对转压气机中的校验分析[J].航空动力学报,2012,27(7):1448⁃1455.

    WANGLei,LIUBo.Validation of nonlinear harmonic method in dual⁃stage counter⁃rotating compressor[J].Journal of Aerospace Power,2012,27(7):1448⁃1455.(in Chinese)
    [34] 药晓江,董景新,尚婕,等.非线性谐波法在叶轮机械非定常计算中的应用[J].推进技术,2016,37(4):632⁃639.

    YAOXiaojiang,DONGJingxin,SHANGJie,et al.Application of non⁃linear harmonic in turbomarchinery 3D flow field unsteady simulation[J].Journal of Propulsion Technology,2016,37(4):632⁃639.(in Chinese)
    [35] 王晓东,康顺.低速轴流涡轮非定常数值模拟的非线性谐波法[J].工程热物理学报,2009,30(6):949⁃952.

    WANGXiaodong,KANGShun.Nonlinear harmonic method in unsteady numerical simulation on a low speed axial turbine[J].Journal of Engineering Thermophysics,2009,30(6):949⁃952.(in Chinese)
    [36] DECONINCKT,CAPRONA,HIRSCHC,et al.Prediction of near⁃ and far⁃field noise generated by contra⁃rotating open rotors[J].International Journal of Aeroacoustics,2012,11(2):219⁃238.
    [37] FERRANTE PVILMIN SHIRSCH Cet alIntegrated “CFD⁃Acoustic” computational approach to the simulation of a contra rotating open rotor at angle of attackAIAA⁃2013⁃22422013

    FERRANTEP,VILMINS,HIRSCHC,et al.Integrated “CFD⁃Acoustic” computational approach to the simulation of a contra rotating open rotor at angle of attack[R].AIAA⁃2013⁃2242,2013.

    [38] WEIChunhua,JIAOLingrui,TONGFan,et al.Pressure field measurements on large‑scale propeller blades using pressure‑sensitive paint[J].Acta Mechanica Sinica,2022,38(2):121366.1‑121366.11.
  • 加载中
图(24) / 表(3)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  263
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 网络出版日期:  2022-09-06
  • 刊出日期:  2022-08-28

目录

    /

    返回文章
    返回