Formation mechanism of taxonomic structures for forest communities in different successional stages in Changbai Mountains of northeastern China
-
摘要:目的 群落分类结构是群落内物种组成的一种直观反映形式,群落分类结构指标与零假设模型的差异能够反映出局域生态学过程(环境过滤和种间竞争等)对群落分类结构形成的影响。方法 基于长白山地区3块处于不同演替阶段的阔叶红松林样地数据,本文首先分析了长白山典型群落在不同空间尺度上的分类结构特征,并利用群落随机零模型计算标准化差异值(SES)判断影响群落构建的主要生态学过程。结果 研究结果表明:长白山地区处于不同演替阶段的森林群落分类结构均具有一定的尺度依赖性,随着尺度的增大,属种比和科种比呈现下降趋势。幂函数模型能够很好地拟合3块样地的属−种关系和科−种关系。通过比较实际群落与随机群落分类结构的差异,我们发现在局域尺度上,次生针阔混交林和椴树红松林的属种比和科种比均显著低于随机群落(SES为负值),次生杨桦林群落属种比的SES值则在绝大多数尺度上为正值。结论 环境过滤和扩散的限制作用对次生针阔混交林和原始椴树红松林群落分类结构形成的影响要强于种间竞争,而在次生杨桦林中,竞争作用始终占据主导作用。群落的分类结构受到多种生态学过程的综合影响,它们的相对作用强度会随尺度和演替阶段的变化而发生改变。Abstract:Objective Taxonomic structures are the intuitive reflection of the species compositions of communities and they can reflect the regulation of local processes, such as environmental filtering and interspecific competition.Method Based on the species composition data collected in three large forest observational field studies, the taxonomic structures of the communities were analyzed at different sampling scales. Random null model was used and the “standardized effect size” (SES) of taxonomic ratios was calculated.Result As expected, the taxonomic ratios declined with increasing grain size in all plots. The quantitative relationship between genera/families and species, described by a linearized power function, showed a good fit. In the mixed conifer and broadleaved forest and Tilia sp.-Korean pine forest, the taxonomic ratios of the observed communities had significantly lower values than those of the simulated random community under the test of null model at almost all scales. But that was not the case for the secondary poplar-birch forest, SES was larger than 0.Conclusion The results suggest that the effect of abiotic filtering is greater than the effect of interspecific competition in shaping the local community for the mixed conifer and broadleaved forest and Tilia sp.-Korean pine forest. In the secondary poplar-birch forest, competition dominated the taxonomic structure of the community. Local processes do influence the taxonomic structure, but their combined effects may vary with scale and successional stages.
-
Key words:
- taxonomic structure /
- abiotic filtering /
- interspecific competition /
- successional stage
-
表 1 3块样地基本统计信息
Table 1. Statistical information of the three study sample plots
样地 Sample plot 纬度位置 Latitude 经度位置 Longitude 平均海拔
Average altitude/m个体数
Number of individuals物种数
Number of species次生杨桦林
Secondary poplar and birch mixed forest (PBF)42°19′10″N 128°07′49″E 878.7 21 023 50 次生针阔混交林
Secondary mixed conifer and broadleaved forest (CBF)42°20′54″N 128°07′59″E 813.0 15 642 44 原始椴树红松林
Mixed Tilia sp. and Korean pine forest (TKF)42°13′41″N 128°04′34″E 1 020.6 12 087 26 表 2 3块样地不同取样尺度下样方数量
Table 2. Number of quadrats at five different scales for three sample plots
取样面积 Sampling size 样方数量 Number of samples 10 m × 10 m 520 20 m × 20 m 130 30 m × 30 m 48 40 m × 40 m 30 50 m × 50 m 20 表 3 3块样地不同空间尺度属种比和科种比
Table 3. Ratios of generic richness (G) to species richness (S)(G/S) and family richness (F) to species richness (F/S) at five different spatial scales
样地
Sample plot空间尺度
Spatial scale属种比
Genus richness/
species richness
(G/S)科种比
Family richness/
species richness
(F/S)最大值 Max. 最小值 Min. 均值 Mean 最大值 Max. 最小值 Min. 均值 Mean PBF 10 m × 10 m 1.00 0.50 0.79 1.00 0.35 0.65 20 m × 20 m 0.89 0.61 0.76 0.75 0.34 0.52 30 m × 30 m 0.90 0.62 0.73 0.63 0.36 0.49 40 m × 40 m 0.90 0.57 0.72 0.60 0.35 0.44 50 m × 50 m 0.80 0.56 0.70 0.53 0.34 0.42 CBF 10 m × 10 m 1.00 0.33 0.72 1.00 0.33 0.61 20 m × 20 m 0.92 0.50 0.68 0.71 0.38 0.53 30 m × 30 m 0.80 0.57 0.66 0.64 0.38 0.48 40 m × 40 m 0.71 0.56 0.64 0.56 0.37 0.46 50 m × 50 m 0.70 0.57 0.63 0.55 0.35 0.44 TKF 10 m × 10 m 1.00 0.40 0.76 1.00 0.28 0.58 20 m × 20 m 1.00 0.44 0.65 0.75 0.30 0.45 30 m × 30 m 0.83 0.44 0.60 0.50 0.33 0.42 40 m × 40 m 0.75 0.44 0.59 0.62 0.33 0.41 50 m × 50 m 0.66 0.50 0.57 0.46 0.33 0.39 -
[1] Tilman D. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 10854−10861. doi: 10.1073/pnas.0403458101 [2] Diamond J M. Assembly of species communities[J]. Ecology and Evolution of Communities, 1975: 343−444. [3] Gotelli N J. Null model analysis of species co-occurrence patterns[J]. Ecology, 2000, 81(9): 2606−2621. doi: 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2 [4] Jabot F, Chave J. Analyzing tropical forest tree species abundance distributions using a nonneutral model and through approximate bayesian inference[J]. The American Naturalist, 2011, 178(2): E37−47. doi: 10.1086/660829 [5] Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the holy grail[J]. Functional Ecology, 2002, 16(5): 545−556. doi: 10.1046/j.1365-2435.2002.00664.x [6] Ulrich W, Hajdamowicz I, Zalewski M, et al. Species assortment or habitat filtering: a case study of spider communities on lake islands[J]. Ecological Research, 2010, 25: 375−381. doi: 10.1007/s11284-009-0661-y [7] Burns J H, Strauss S Y. More closely related species are more ecologically similar in an experimental test[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(13): 5302−5307. doi: 10.1073/pnas.1013003108 [8] Kraft N J B, Valencia R, Ackerly D D. Functional traits and niche-based tree community assembly in an Amazonian forest[J]. Science, 2008, 322: 580−582. doi: 10.1126/science.1160662 [9] Baldeck C A, Kembel S W, Harms K E, et al. A taxonomic comparison of local habitat niches of tropical trees[J]. Oecologia, 2013, 173(4): 1491−1498. doi: 10.1007/s00442-013-2709-5 [10] Hubbell S P. The unified neutral theory of biodiversity and biogeography[M]. Princeton: Princeton University Press, 2001. [11] Zobel M. Plant species co-existence: the role of historical, evolutionary and ecological factors[J]. Oikos, 1992, 65(2): 314−320. doi: 10.2307/3545024 [12] Eriksson O. The species-pool hypothesis and plant community diversity[J]. Oikos, 1993, 68(2): 371−374. doi: 10.2307/3544854 [13] Vellend M. Conceptual synthesis in community ecology[J]. Quarterly Review of Biology, 2010, 85(2): 183−206. doi: 10.1086/652373 [14] Ernest S K, Brown J H, Thibault K M, et al. Zero sum, the niche, and meta-communities: long-term dynamics of community assembly[J]. The American Naturalist, 2008, 172: 257−269. doi: 10.1086/592402 [15] Elton C. Competition and the structure of ecological communities[J]. Journal of Animal Ecology, 1946, 15(1): 54−68. doi: 10.2307/1625 [16] Passy S, Legendre P. Power law relationships among hierarchical taxonomic categories in algae reveal a new paradox of the plankton[J]. Global Ecology & Biogeography, 2006, 15(5): 528−535. [17] Wang S, Tang Z, Qiao X, et al. The influence of species pools and local processes on the community structure: a test case with woody plant communities in China ’s mountains[J]. Ecography, 2012, 35(12): 1168−1175. doi: 10.1111/j.1600-0587.2012.00045.x [18] Enquist B J, Haskell J P, Tiffney B H. General patterns of taxonomic and biomass partitioning in extant and fossil plant communities[J]. Nature, 2002, 419: 610−613. [19] Webb C O, Ackerly D D, Mcpeek M A, et al. Phylogenies and community ecology[J]. Annual Review of Ecology and Systematics, 2002, 8(33): 475−505. [20] Lessard J P, Weinstein B G, Borregaard M K, et al. Process-based species pools reveal the hidden signature of biotic interactions amid the influence of temperature filtering[J]. American Naturalist, 2016, 187: 75−88. doi: 10.1086/684128 [21] Zhang C Y, Jin W B, Gao L S, et al. Scale dependent structuring of spatial diversity in two temperate forest communities[J]. Forest Ecology and Management, 2014, 316: 110−116. doi: 10.1016/j.foreco.2013.07.025 [22] Cavender B J, Adrienne K, Brianna M. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale[J]. Ecology, 2006, 87(7): S109−S122. [23] Swenson N G, Enquist B J, Jill T, et al. The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities[J]. Ecology, 2007, 88(7): 1770−1780. doi: 10.1890/06-1499.1 [24] Shen G, Yu M, Hu X, et al. Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity[J]. Ecology, 2009, 90: 3033−3041. doi: 10.1890/08-1646.1 [25] Wang X, Swenson N G, Wiegand T, et al. Phylogenetic and functional diversity area relationships in two temperate forests[J]. Ecography, 2013, 36(8): 883−893. doi: 10.1111/j.1600-0587.2012.00011.x [26] Roxburgh S H, Chesson P. A new method for detecting species associations with spatially autocorrelated data[J]. Ecology, 1998, 79(6): 2180−2192. doi: 10.1890/0012-9658(1998)079[2180:ANMFDS]2.0.CO;2 [27] Palmer M W, van der Maarel E. Variance in species richness, species association, and niche limitation[J]. Oikos, 1995, 73(2): 203−213. [28] Mouillot D, Poulin R. Taxonomic partitioning shedding light on the diversification of parasite communities[J]. Oikos, 2004, 104(1): 205−207. doi: 10.1111/oik.2004.104.issue-1 [29] Stokes C J, Archer S R. Niche differentiation and neutral theory: an integrated perspective on shrub assemblages in a parkland savanna[J]. Ecology, 2010, 91(4): 1152−1162. doi: 10.1890/08-1105.1 [30] Gómez J P, Bravo G A, Brumfield R T, et al. A phylogenetic approach to disentangling the role of competition and habitat filtering in community assembly of Neotropical forest birds[J]. Journal of Animal Ecology, 2010, 79(6): 1181−1192. doi: 10.1111/j.1365-2656.2010.01725.x [31] Mayfield M M, Levine J M. Opposing effects of competitive exclusion on the phylogenetic structure of communities[J]. Ecology Letters, 2010, 13(9): 1085. doi: 10.1111/j.1461-0248.2010.01509.x [32] Seifert T, Seifert S, Seydack A, et al. Competition effects in an Afrotemperate forest[J]. Forest Ecosystems, 2014, 1: 13. doi: 10.1186/s40663-014-0013-4 [33] Rahbek C. The role of spatial scale and the perception of large-scale species-richness patterns[J]. Ecology Letters, 2005, 8(2): 224−239. [34] Weiher E, Freund D, Bunton T, et al. Advances, challenges and a developing synthesis of ecological community assembly theory[J]. Philosophical Transactions Biological Sciences, 2011, 366: 2403−2413. doi: 10.1098/rstb.2011.0056