Lactobacillus plantarum ZDY04 reduces Trimethylamine N-Oxide-induced atherosclerosis by promoting reverse cholesterol transport in ApoE-/- mice
-
摘要:目的 探讨植物乳杆菌ZDY04能否改善氧化三甲胺(TMAO)诱导的小鼠动脉粥样硬化及其机制研究。方法 6~8周龄雌性载脂蛋白E基因敲除(apolipoprotein E-deficient mice,ApoE-/-)小鼠被随机分成3组:正常饮食组(Chow组)、胆碱+溶剂组(Choline+PBS组)和Choline+ZDY04组,通过自由饮用1.3%高胆碱饮食构建小鼠动脉粥样硬化模型,灌胃含有15%甘油的无菌PBS或菌株,持续16周,检测血脂水平,uHPLC-MS/MS测定血浆TMAO和粪便三甲胺(TMA)的含量,油红“O”染色检测全长主动脉粥样硬化病变程度,苏木素-伊红、油红“O”以及Masson染色分别检测主动脉根部斑块面积、脂质占比以及胶原纤维含量,免疫荧光检测主动脉根部斑块中巨噬细胞以及平滑肌细胞数量,RT-qPCR和Western blotting检测小鼠肝脏胆固醇逆向转运相关基因及Fmo3基因的表达水平。结果 与Choline+PBS组小鼠相比,Choline+ZDY04组小鼠主动脉脂质沉积区域显著减少,主动脉根部动脉粥样硬化斑块面积,脂滴及巨噬细胞阳性区域明显减少,胶原纤维和平滑肌细胞在斑块中占比没有明显变化。粪便TMA及血清TMAO含量显著降低。血清总胆固醇、低密度脂蛋白胆固醇含量具有下降趋势但差异无统计学意义,高密度脂蛋白胆固醇含量显著上升。胆固醇逆向转运相关基因Sr-b1、Abcg5和Cyp7a1等显著升高,Fmo3基因表达水平没有变化。结论 植物乳杆菌ZDY04通过促进胆固醇的逆向转运和分解,抑制ApoE-/-小鼠体内的动脉粥样硬化。
-
关键词:
- 动脉粥样硬化 /
- 植物乳杆菌ZDY04 /
- 氧化三甲胺 /
- 胆固醇逆向转运
Abstract:Objective To observe the effect of Lactobacillus plantarum ZDY04 in Trimethylamine N-Oxide (TMAO)-induced atherosclerosis in mice and its underlying mechanisms.Methods Thirty female (six to eight-weeks old) apolipoprotein E-deficient (ApoE-/-) mice were randomly assigned into three groups as follows: Chow group, Choline+PBS group and Choline+ZDY04 group, and fed with 1.3% high-choline diet to establish atherosclerosis models, then treated with sterile PBS or ZDY04 containing 15% glycerol for 16 weeks. After treatment, serum lipids were measured using cholesterol kit. The serum TMAO and fecal TMA content were determined by using liquid chromatography-tandem mass spectrometry LC-MS. Atherosclerotic lesion formation in whole aorta was detected with Oil red O staining. Hematoxylin-eosin, Oil red O and Masson staining were used to detect the atherosclerotic area, lipid deposition and collagen content in the aortic roots. Immunofluorescent staining of macrophage specific antigen CD68 and smooth muscle a-actin (SMA) were used to examine the lesion composition in the aortic root. The expression of genes related to reverse cholesterol transport and Fmo3 in liver was detected with RT-qPCR and Western blot.Results Compared with Choline+PBS group, the atherosclerotic lesions in the whole aortas significantly reduced in Choline+ZDY04 group. ZDY04 treatment significantly decreased atherosclerotic lesion size, lipid deposition and macrophage content, but not the contents of lesion smooth muscle cells or collagen, when compared to Choline+PBS fed mice. The content of cecum TMA and serum TMAO decreased significantly in Choline+ZDY04 group; serum high density lipoprotein-cholesterol significantly increased, but total cholesterol and low density lipoprotein-cholesterol only marginally decreased. ZDY04 significantly increased the mRNA expression of reverse cholesterol transport genes Sr-b1, Abcg5, Cyp7a1 but not Fmo3. Liver CYP7A1 protein level was also increased by ZDY04 compared to controls.Conclusion Lactobacillus plantarum ZDY04 can inhibit TMAO induced thermogenesis by promoting reverse transport and decomposition of cholesterol in ApoE-/- mice. -
表 1 引物序列
基因 序列(5′→3′) 序列长度(bp) Fmo3 F GTGGTTCTTGGGTGATGAGTC 109 R GAGATGGCGGTGGGTAAGTT Scarb1 F TTCTCGCCCTTCAGGATCT 147 R GCTCATCAAGCAGCAGGTC Cyp7a1 F AACAACCTGCCAGTACTAGATAGC 99 R GTGTAGAGTGAAGTCCTCCTTAGC Abcg1 F ATAATGGCCACCAACTCACC 112 R GGGACCTTTCCTATTCGGTT Abcg5 F CGCGAGAGGTTGCGATACA 128 R CTGCCAATCATTTGGTCCGC Abcg8 F TGGGCATCCGAAATCTAAG 222 R TTGGGCAGCAGTTGGTCAT β-actin F TGTTACCAACTGGGACGACA 165 R GGGGTGTTGAAGGTCTCAAA -
[1] Dagenais GR, Leong DP, Rangarajan S, et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents(PURE): a prospective cohort study[J]. Lancet, 2020, 395(10226): 785-794. doi: 10.1016/S0140-6736(19)32007-0 [2] Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk[J]. N Engl J Med, 2013, 368(17): 1575-1584. doi: 10.1056/NEJMoa1109400 [3] Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341): 57-63. doi: 10.1038/nature09922 [4] Bennett BJ, de Aguiar Vallim TQ, Wang Z, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation[J]. Cell Metab, 2013, 17(1): 49-60. doi: 10.1016/j.cmet.2012.12.011 [5] Rath S, Heidrich B, Pieper DH, et al. Uncovering the trimethylamine-producing bacteria of the human gut microbiota[J]. Microbiome, 2017, 5(1): 54. doi: 10.1186/s40168-017-0271-9 [6] Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappaB[J]. J Am Heart Assoc, 2016, 5(2): e002767. doi: 10.1161/JAHA.115.002767 [7] Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19(5): 576-585. doi: 10.1038/nm.3145 [8] Macpherson ME, Hov JR, Ueland T, et al. Gut microbiota-dependent trimethylamine N-oxide associates with inflammation in common variable immunodeficiency[J]. Front Immunol, 2020, 11: 574500. doi: 10.3389/fimmu.2020.574500 [9] Zhang H, Meng J, Yu H. Trimethylamine N-oxide supplementation abolishes the cardioprotective effects of voluntary exercise in mice fed a western diet[J]. Front Physiol, 2017, 8: 944. doi: 10.3389/fphys.2017.00944 [10] Hill C, Guarner F, Reid G, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic[J]. Nat Rev Gastroenterol Hepatol, 2014, 11(8): 506-514. doi: 10.1038/nrgastro.2014.66 [11] Din AU, Hassan A, Zhu Y, et al. Amelioration of TMAO through probiotics and its potential role in atherosclerosis[J]. Appl Microbiol Biotechnol, 2019, 103(23/24): 9217-9228. [12] Wu TR, Lin CS, Chang CJ, et al. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis[J]. Gut, 2019, 68(2): 248-262. doi: 10.1136/gutjnl-2017-315458 [13] Zhu Y, Li T, Din AU, et al. Beneficial effects of Enterococcus faecalis in hypercholesterolemic mice on cholesterol transportation and gut microbiota[J]. Appl Microbiol Biotechnol, 2019, 103(7): 3181-3191. doi: 10.1007/s00253-019-09681-7 [14] Qiu L, Tao X, Xiong H, et al. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice[J]. Food Funct, 2018, 9(8): 4299-4309. doi: 10.1039/C8FO00349A [15] Qiu L, Yang D, Tao X, et al. Enterobacter aerogenes ZDY01 attenuates choline-induced trimethylamine N-oxide levels by remodeling gut microbiota in mice[J]. J Microbiol Biotechnol, 2017, 27(8): 1491-1499. doi: 10.4014/jmb.1703.03039 [16] Kuka J, Liepinsh E, Makrecka-Kuka M, et al. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation[J]. Life Sci, 2014, 117(2): 84-92. doi: 10.1016/j.lfs.2014.09.028 [17] Wu WK, Panyod S, Ho CT, et al. Dietary allicin reduces transformation of L-carnitine to TMAO through impact on gut microbiota[J]. J Funct Foods, 2015, 15: 408-417. doi: 10.1016/j.jff.2015.04.001 [18] Chen ML, Yi L, Zhang Y, et al. Resveratrol attenuates trimethylamine-N-oxide(TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota[J]. mBio, 2016, 7(2): e02210-02215. [19] Wang Z, Roberts AB, Buffa JA, et al. Non-lethal Inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis[J]. Cell, 2015, 163(7): 1585-1595. doi: 10.1016/j.cell.2015.11.055 [20] Tripolt NJ, Leber B, Triebl A, et al. Effect of Lactobacillus casei shirota supplementation on trimethylamine-N-oxide levels in patients with metabolic syndrome: an open-label, randomized study[J]. Atherosclerosis, 2015, 242(1): 141-144. doi: 10.1016/j.atherosclerosis.2015.05.005 [21] Canyelles M, Tondo M, Cedo L, et al. Trimethylamine N-oxide: a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function[J]. Int J Mol Sci, 2018, 19(10): 3228. doi: 10.3390/ijms19103228 [22] Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk[J]. Cell, 2016, 165(1): 111-124. doi: 10.1016/j.cell.2016.02.011 [23] Linton MF, Tao H, Linton EF, et al. SR-BI: a multifunctional receptor in cholesterol homeostasis and atherosclerosis[J]. Trends Endocrinol Metab, 2017, 28(6): 461-472. doi: 10.1016/j.tem.2017.02.001 [24] Yu L, Li-Hawkins J, Hammer RE, et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol[J]. J Clin Investig, 2002, 110(5): 671-680. doi: 10.1172/JCI0216001 [25] Wahlstrom A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41-50. doi: 10.1016/j.cmet.2016.05.005