留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物乳杆菌ZDY04促进胆固醇逆向转运减轻TMAO诱导

汤景辉 秦嫚嫚 唐乐 魏华 裘梁 余军

汤景辉, 秦嫚嫚, 唐乐, 魏华, 裘梁, 余军. 植物乳杆菌ZDY04促进胆固醇逆向转运减轻TMAO诱导[J]. 机械工程学报, 2023, 1(5): 24-34. doi: 10.13381/j.cnki.cjm.00000-00
引用本文: 汤景辉, 秦嫚嫚, 唐乐, 魏华, 裘梁, 余军. 植物乳杆菌ZDY04促进胆固醇逆向转运减轻TMAO诱导[J]. 机械工程学报, 2023, 1(5): 24-34. doi: 10.13381/j.cnki.cjm.00000-00
TANG Jing-hui, QIN Man-man, TANG Le, WEI Hua, QIU Liang, YU Jun. Lactobacillus plantarum ZDY04 reduces Trimethylamine N-Oxide-induced atherosclerosis by promoting reverse cholesterol transport in ApoE-/- mice[J]. JOURNAL OF MECHANICAL ENGINEERING, 2023, 1(5): 24-34. doi: 10.13381/j.cnki.cjm.00000-00
Citation: TANG Jing-hui, QIN Man-man, TANG Le, WEI Hua, QIU Liang, YU Jun. Lactobacillus plantarum ZDY04 reduces Trimethylamine N-Oxide-induced atherosclerosis by promoting reverse cholesterol transport in ApoE-/- mice[J]. JOURNAL OF MECHANICAL ENGINEERING, 2023, 1(5): 24-34. doi: 10.13381/j.cnki.cjm.00000-00

植物乳杆菌ZDY04促进胆固醇逆向转运减轻TMAO诱导

doi: 10.13381/j.cnki.cjm.00000-00
基金项目: 国家自然科学基金(81860090);江西省教育厅一般项目(GJJ190677);江西中医药大学博士启动基金(2019WBZR009);江西省自然科学基金(20202BABL206007);江西省重点实验室建设项目(20202BCD42014);南昌市科技局项目(2018-NCZDSY-005)
详细信息
    作者简介:

    汤景辉(1992-),男,学士,从事益生菌与心血管保护作用研究,E-mail:xxxxxxxx@qq.com

    通讯作者:

    裘梁(1981-),男,副教授,博士,E-mail:xxxxxxx.edu.cn

  • 中图分类号: Q93

Lactobacillus plantarum ZDY04 reduces Trimethylamine N-Oxide-induced atherosclerosis by promoting reverse cholesterol transport in ApoE-/- mice

More Information
  • 摘要:
    目的  探讨植物乳杆菌ZDY04能否改善氧化三甲胺(TMAO)诱导的小鼠动脉粥样硬化及其机制研究。
    方法  6~8周龄雌性载脂蛋白E基因敲除(apolipoprotein E-deficient mice,ApoE-/-)小鼠被随机分成3组:正常饮食组(Chow组)、胆碱+溶剂组(Choline+PBS组)和Choline+ZDY04组,通过自由饮用1.3%高胆碱饮食构建小鼠动脉粥样硬化模型,灌胃含有15%甘油的无菌PBS或菌株,持续16周,检测血脂水平,uHPLC-MS/MS测定血浆TMAO和粪便三甲胺(TMA)的含量,油红“O”染色检测全长主动脉粥样硬化病变程度,苏木素-伊红、油红“O”以及Masson染色分别检测主动脉根部斑块面积、脂质占比以及胶原纤维含量,免疫荧光检测主动脉根部斑块中巨噬细胞以及平滑肌细胞数量,RT-qPCR和Western blotting检测小鼠肝脏胆固醇逆向转运相关基因及Fmo3基因的表达水平。
    结果  与Choline+PBS组小鼠相比,Choline+ZDY04组小鼠主动脉脂质沉积区域显著减少,主动脉根部动脉粥样硬化斑块面积,脂滴及巨噬细胞阳性区域明显减少,胶原纤维和平滑肌细胞在斑块中占比没有明显变化。粪便TMA及血清TMAO含量显著降低。血清总胆固醇、低密度脂蛋白胆固醇含量具有下降趋势但差异无统计学意义,高密度脂蛋白胆固醇含量显著上升。胆固醇逆向转运相关基因Sr-b1Abcg5Cyp7a1等显著升高,Fmo3基因表达水平没有变化。
    结论  植物乳杆菌ZDY04通过促进胆固醇的逆向转运和分解,抑制ApoE-/-小鼠体内的动脉粥样硬化。

     

  • 图  植物乳杆菌ZDY04抑制ApoE-/-小鼠全长主动脉中动脉粥样硬化病变的形成

    注:A为全长主动脉油红“O”染色;B~E为全长主动脉、主动脉弓、胸主动脉和腹主动脉斑块病变区域统计结果。与Choline+PBS组相比,*P<0.050,**P<0.010,***P<0.001。

    图  植物乳杆菌ZDY04抑制ApoE-/-小鼠主动脉根部中动脉粥样硬化病变的形成

    注:A分别为主动脉根部H&E、油红“O”和Masson染色;B~D分别为斑块面积、斑块内脂滴占比和胶原纤维占比统计结果。与Choline+PBS组相比,*P<0.05,**P<0.01。

    图  植物乳杆菌ZDY04减少主动脉根部中巨噬细胞的阳性区域

    注:A为小鼠主动脉根部AS斑块CD68和α-SMA免疫荧光染色;B~C分别为CD68及α-SMA阳性区域统计结果,与Choline+PBS组相比,*P<0.05,**P<0.01。

    图  植物乳杆菌ZDY04减少ApoE-/-小鼠中血清TMAO和粪便TMA的水平

    注:A、B分别为盲肠内TMA和血清内TMAO含量;C为肝脏Fmo3基因表达;D为肝脏FMO3蛋白表达及统计结果。与Choline+PBS 组相比,*P<0.05,**P<0.01。

    图  植物乳杆菌ZDY04对小鼠血清胆固醇的影响

    注:A~C分别为血清总胆固醇、低密度脂蛋白胆固醇及高密度脂蛋白胆固醇统计结果。与Choline+PBS组相比,*P<0.05,**P<0.01。

    图  植物乳杆菌ZDY04升高小鼠肝脏中胆固醇逆转运相关基因的表达

    注:A~E分别为肝脏Sr-b1Abcg5Abcg8Abcg1Cyp7a1基因mRNA表达;F为肝脏CYP7A1蛋白表达。与Choline+PBS组相比,*P<0.05,**P<0.01,***P<0.001,****P<0.000 1。

    表  1  引物序列

    基因序列(5′→3′)序列长度(bp)
    Fmo3FGTGGTTCTTGGGTGATGAGTC109
    RGAGATGGCGGTGGGTAAGTT
    Scarb1FTTCTCGCCCTTCAGGATCT147
    RGCTCATCAAGCAGCAGGTC
    Cyp7a1FAACAACCTGCCAGTACTAGATAGC99
    RGTGTAGAGTGAAGTCCTCCTTAGC
    Abcg1FATAATGGCCACCAACTCACC112
    RGGGACCTTTCCTATTCGGTT
    Abcg5FCGCGAGAGGTTGCGATACA128
    RCTGCCAATCATTTGGTCCGC
    Abcg8FTGGGCATCCGAAATCTAAG222
    RTTGGGCAGCAGTTGGTCAT
    β-actinFTGTTACCAACTGGGACGACA165
    RGGGGTGTTGAAGGTCTCAAA
    下载: 导出CSV
  • [1] Dagenais GR, Leong DP, Rangarajan S, et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents(PURE): a prospective cohort study[J]. Lancet, 2020, 395(10226): 785-794. doi: 10.1016/S0140-6736(19)32007-0
    [2] Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk[J]. N Engl J Med, 2013, 368(17): 1575-1584. doi: 10.1056/NEJMoa1109400
    [3] Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341): 57-63. doi: 10.1038/nature09922
    [4] Bennett BJ, de Aguiar Vallim TQ, Wang Z, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation[J]. Cell Metab, 2013, 17(1): 49-60. doi: 10.1016/j.cmet.2012.12.011
    [5] Rath S, Heidrich B, Pieper DH, et al. Uncovering the trimethylamine-producing bacteria of the human gut microbiota[J]. Microbiome, 2017, 5(1): 54. doi: 10.1186/s40168-017-0271-9
    [6] Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappaB[J]. J Am Heart Assoc, 2016, 5(2): e002767. doi: 10.1161/JAHA.115.002767
    [7] Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19(5): 576-585. doi: 10.1038/nm.3145
    [8] Macpherson ME, Hov JR, Ueland T, et al. Gut microbiota-dependent trimethylamine N-oxide associates with inflammation in common variable immunodeficiency[J]. Front Immunol, 2020, 11: 574500. doi: 10.3389/fimmu.2020.574500
    [9] Zhang H, Meng J, Yu H. Trimethylamine N-oxide supplementation abolishes the cardioprotective effects of voluntary exercise in mice fed a western diet[J]. Front Physiol, 2017, 8: 944. doi: 10.3389/fphys.2017.00944
    [10] Hill C, Guarner F, Reid G, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic[J]. Nat Rev Gastroenterol Hepatol, 2014, 11(8): 506-514. doi: 10.1038/nrgastro.2014.66
    [11] Din AU, Hassan A, Zhu Y, et al. Amelioration of TMAO through probiotics and its potential role in atherosclerosis[J]. Appl Microbiol Biotechnol, 2019, 103(23/24): 9217-9228.
    [12] Wu TR, Lin CS, Chang CJ, et al. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis[J]. Gut, 2019, 68(2): 248-262. doi: 10.1136/gutjnl-2017-315458
    [13] Zhu Y, Li T, Din AU, et al. Beneficial effects of Enterococcus faecalis in hypercholesterolemic mice on cholesterol transportation and gut microbiota[J]. Appl Microbiol Biotechnol, 2019, 103(7): 3181-3191. doi: 10.1007/s00253-019-09681-7
    [14] Qiu L, Tao X, Xiong H, et al. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice[J]. Food Funct, 2018, 9(8): 4299-4309. doi: 10.1039/C8FO00349A
    [15] Qiu L, Yang D, Tao X, et al. Enterobacter aerogenes ZDY01 attenuates choline-induced trimethylamine N-oxide levels by remodeling gut microbiota in mice[J]. J Microbiol Biotechnol, 2017, 27(8): 1491-1499. doi: 10.4014/jmb.1703.03039
    [16] Kuka J, Liepinsh E, Makrecka-Kuka M, et al. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation[J]. Life Sci, 2014, 117(2): 84-92. doi: 10.1016/j.lfs.2014.09.028
    [17] Wu WK, Panyod S, Ho CT, et al. Dietary allicin reduces transformation of L-carnitine to TMAO through impact on gut microbiota[J]. J Funct Foods, 2015, 15: 408-417. doi: 10.1016/j.jff.2015.04.001
    [18] Chen ML, Yi L, Zhang Y, et al. Resveratrol attenuates trimethylamine-N-oxide(TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota[J]. mBio, 2016, 7(2): e02210-02215.
    [19] Wang Z, Roberts AB, Buffa JA, et al. Non-lethal Inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis[J]. Cell, 2015, 163(7): 1585-1595. doi: 10.1016/j.cell.2015.11.055
    [20] Tripolt NJ, Leber B, Triebl A, et al. Effect of Lactobacillus casei shirota supplementation on trimethylamine-N-oxide levels in patients with metabolic syndrome: an open-label, randomized study[J]. Atherosclerosis, 2015, 242(1): 141-144. doi: 10.1016/j.atherosclerosis.2015.05.005
    [21] Canyelles M, Tondo M, Cedo L, et al. Trimethylamine N-oxide: a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function[J]. Int J Mol Sci, 2018, 19(10): 3228. doi: 10.3390/ijms19103228
    [22] Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk[J]. Cell, 2016, 165(1): 111-124. doi: 10.1016/j.cell.2016.02.011
    [23] Linton MF, Tao H, Linton EF, et al. SR-BI: a multifunctional receptor in cholesterol homeostasis and atherosclerosis[J]. Trends Endocrinol Metab, 2017, 28(6): 461-472. doi: 10.1016/j.tem.2017.02.001
    [24] Yu L, Li-Hawkins J, Hammer RE, et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol[J]. J Clin Investig, 2002, 110(5): 671-680. doi: 10.1172/JCI0216001
    [25] Wahlstrom A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41-50. doi: 10.1016/j.cmet.2016.05.005
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  121
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-22
  • 修回日期:  2021-03-24
  • 网络出版日期:  2022-09-19
  • 刊出日期:  2023-05-31

目录

    /

    返回文章
    返回