留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地质和岩土工程光电传感监测研究新进展——第六届OSMG国际论坛综述

朱鸿鹄 施斌 张诚成

朱鸿鹄, 施斌, 张诚成. 地质和岩土工程光电传感监测研究新进展——第六届OSMG国际论坛综述[J]. 机械工程学报, 2020, 28(1): 178-188. doi: 10.13544/j.cnki.jeg.2018-254
引用本文: 朱鸿鹄, 施斌, 张诚成. 地质和岩土工程光电传感监测研究新进展——第六届OSMG国际论坛综述[J]. 机械工程学报, 2020, 28(1): 178-188. doi: 10.13544/j.cnki.jeg.2018-254
ZHU Honghu, SHI Bin, ZHANG Chengcheng. CURRENT PROGRESS AND TRENDS IN OPTO-ELECTRONIC SENSOR-BASED MONITORING IN GEO-ENGINEERING—A SUMMARY OF 6TH OSMG-2017[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 28(1): 178-188. doi: 10.13544/j.cnki.jeg.2018-254
Citation: ZHU Honghu, SHI Bin, ZHANG Chengcheng. CURRENT PROGRESS AND TRENDS IN OPTO-ELECTRONIC SENSOR-BASED MONITORING IN GEO-ENGINEERING—A SUMMARY OF 6TH OSMG-2017[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 28(1): 178-188. doi: 10.13544/j.cnki.jeg.2018-254

地质和岩土工程光电传感监测研究新进展——第六届OSMG国际论坛综述

doi: 10.13544/j.cnki.jeg.2018-254
基金项目: 

国家重大科研仪器研制项目 41427801

国家自然科学基金项目 41722209

国家自然科学基金项目 41672277

详细信息
    作者简介:

    朱鸿鹄(1979-),男,博士,教授,博士生导师,从事地质工程、岩土力学方面的研究工作.E-mail:zhh@nju.edu.cn

    通讯作者:

    施斌(1961-),男,博士,教授,博士生导师,从事工程地质和环境岩土工程方面的研究工作.E-mail:shibin@nju.edu.cn

  • 中图分类号: P642

CURRENT PROGRESS AND TRENDS IN OPTO-ELECTRONIC SENSOR-BASED MONITORING IN GEO-ENGINEERING—A SUMMARY OF 6TH OSMG-2017

Funds: 

the National Key Scientific Instrument and Equipment Development Project 41427801

National Natural Science Foundation of China 41722209

National Natural Science Foundation of China 41672277

  • 摘要: 第六届地质(岩土)工程光电传感监测国际论坛于2017年11月3~5日在南京大学顺利召开。本届论坛主题为“基础设施监测技术前沿及应用”,共设置了35场特邀报告,来自近20个国家和地区的350余位代表参会。本届论坛显示,近几年来国内外地质和岩土工程光电传感监测领域的研究工作又取得了很多新进展:(1)光电感测解调技术不断成熟和完善,监测信噪比、空间分辨率等指标也突飞猛进;(2)国际上出现了一系列适用于地质与岩土工程监测的新型光电传感器,如聚合物光纤土工织物等;(3)光电传感器及其监测系统成为保障隧道、堤坝、核电站、桥梁等基础设施安全运营的有力工具,为这些设施的健康状态诊断和损伤识别提供了数据支撑;(4)光电传感监测技术在地质灾害监测预警中扮演了越来越重要的角色。未来的研究热点主要集中于3个方面:(1)高性价比的分布式光纤传感解调技术的研发;(2)匹配地质和岩土工程监测需求的新型光纤传感器及其布设工艺的研发;(3)基于人工智能的监测数据处理和灾害预警系统的开发。

     

  • 图  历年OSMG论坛参会人数及国家/地区数

    Figure  1.  Number of OSMG delegates and their countries and regions

    图  a基于相移光栅(π-FBG)的高精度光纤地形变传感器结构;b地形变监测方案(张文涛等,2017)

    Figure  2.  a A high-precision fiber earth deformation sensor based on π-FBG; b experimental scheme for earth deformation observation(Zhang et al., 2017)

    图  地下水位和水分场光纤监测系统示意图(Cao et al., 2018)

    a.传感器结构;b.现场布设图

    Figure  3.  Schematic illustration of the fiber optic monitoring system of groundwater level and water distribution (Cao et al., 2018)

    图  葡萄牙路堤降雨入渗分布式光纤监测(Méndez,2017)

    Figure  4.  Distributed fiber optic sensing of road embankment under rainfall infiltration in Portugal(Méndez, 2017)

    图  基于FBG光纤传感的隧道变形在线监测系统(Zhang et al., 2017)

    Figure  5.  Overall scheme of FBG-based online tunnel deformation monitoring system(Zhang et al., 2017)

    图  基于光频域反射技术的降雨型滑坡模型试验(Schenato et al., 2017)

    Figure  6.  OFDR-based model test of rainfall-triggered landslide(Schenato et al., 2017)

    图  安装有FBG张力传感器的柔性泥石流防护网(Yin et al., 2018)

    Figure  7.  A flexible barrier installed with FBG-SG tension transducers(Yin et al., 2018)

    图  钻孔全断面光纤监测示意图(施斌等,2018)

    Figure  8.  Schematic of borehole full section monitoring using DFOS techniques(Shi et al., 2018)

  • Ansari F. 2017. Applications of discrete and distributed fiber optic sensors for monitoring of civil infrastructure systems. Presented at the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering, Nanjing, China.
    Cao D F, Shi B, Wei G Q, et al. 2018. An improved distributed sensing method for monitoring soil moisture profile using heated carbon fibers[J]. Measurement, 123 : 175-184. doi: 10.1016/j.measurement.2018.03.052
    Chai J, Huo X B, Qian Y Y, et al. 2018. Model test for evaluating deformation and weighting of overlying strata by distributed optical fiber sensing[J]. Journal of China Coal Society, 43 (S1): 36-43. http://d.old.wanfangdata.com.cn/Periodical/mtxb2018z1005
    Chai J, Liu J, Qiu B, et al. 2011. Detecting deformations in uncompacted strata by fiber Bragg grating sensors incorporated into GFRP[J]. Tunnelling and Underground Space Technology, 26 (1): 92-99. doi: 10.1016/j.tust.2010.06.009
    Chai J, Yuan Q, Zhang D, Li Y. 2017. Overburden deformation detecting and characterizing with distributed optical fiber sensing technology: A novel investigation method for mining ground control[C]//Proceedings of 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo- Engineering. Nanjing: Nanjing University: 88-109.
    Chang K T. 2017. A holistic approach for anomaly detection in deep foundation using distributed fiber optic sensor cable[C]//Proceedings of the the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Chen K P. 2017. Fiber optics sensors for energy application[C]//Proceedings of the the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Cheng G, Shi B, Zhang P S, et al. 2017. Physical model test study on deformation of overlying strata during cola mining with distributed fiber optic deformation monitoring[J]. Journal of Engineering Geology, 25 (4): 926-934.
    Dong Y K. 2017. Ultra-fast distributed Brillouin optical fiber sensor for dynamic strain measurement with Mhz sampling rate[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Dou S, Lindsey N, Wagner A M, et al. 2017. Distributed acoustic sensing for seismic monitoring of the near surface: A traffic-noise interferometry case study[J]. Scientific Reports, 7(1): 11620. doi: 10.1038/s41598-017-11986-4
    Gadi V K, Hossain S, Prajapati A, et al. 2017. Plant-soil interaction: exploring role of stomatal conductance and vegetation growth on spatial variation of hydraulic conductivity in green infrastructures[C]//Proceedings of 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo- Engineering. Nanjing: Nanjing University: 52-58.
    Grocholski B. 2017. Fiber-optic earthquake detection[J]. Science, 358(6369): 1398-1399. http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200911004
    Hauswirth D, Puzrin A M, Carrera A, et al. 2014. Use of fibre-optic sensors for simple assessment of ground surface displacements during tunnelling[J]. Géotechnique, 64 (10): 837-842. doi: 10.1680/geot.14.T.009
    He Z Y. 2017. Review on fiber-optic distributed acoustic sensors[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Hou G Y, Xie B B, Jiang Y S, et al. 2017. Sawtooth layout technology and principle of fiber used in deformation monitoring of roadway subsidence[J]. Rock and Soil Mechanics, 38 (S1): 96-102. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX2017S1013.htm
    Huang A B. 2017. Offshore meteorology mast oscillation monitoring with FBG sensors[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Inyang H I. 2017. Extension of electronic sensing to management of natural and technological hazards. Opportunities and schemes[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Jia Y G. 2017. Marine engineering geology: In-situ test and observation[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Jousset P, Reinsch T, Ryberg T, et al. 2018. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features[J]. Nature Communications, 9(1): 2509. doi: 10.1038/s41467-018-04860-y
    Kechavarzi C, Soga K, de Battista N, et al. 2016. Distributed optical fibre sensing for monitoring geotechnical infrastructure-A practical guide[M]. London, UK:ICE Publishing.
    Klar A, Dromy I, Linker R. 2014. Monitoring tunneling induced ground displacements using distributed fiber-optic sensing[J]. Tunnelling and Underground Space Technology, 40 : 141-150. doi: 10.1016/j.tust.2013.09.011
    Kogure T, Okuda Y. 2018. Monitoring the vertical distribution of rainfall-induced strain changes in a landslide measured by distributed fiber optic sensing with Rayleigh backscattering[J]. Geophysical Research Letters, 45 (9): 4033-4040. doi: 10.1029/2018GL077607
    Kuang K S C. 2018. Wireless chemiluminescence-based sensor for soil deformation detection[J]. Sensors and Actuators A:Physical, 269 : 70-78. doi: 10.1016/j.sna.2017.11.017
    Kunisue S, Kokubo T. 2010. In situ formation compaction monitoring in deep reservoirs using optical fibres[J]. IAHS Publications, 339 : 368-370.
    Kwon I B. 2017. Composites inspection using fiber optic BOCDA sensor with aluminum coated optical fiber[C]//Proceeding of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing Univerisy.
    Liehr S. 2017. Distributed fiber optic sensing techniques: From high strain applications to nanostrain sensitivity[C]//Proceeding of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Lienhart W. 2017. New approaches to monitor geotechnical structures using mobile mapping systems, fiber optic sensors and image based techniques[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Lindsey N J, Martin E R, Dreger D S, et al. 2017. Fiber-optic network observations of earthquake wavefields[J]. Geophysical Research Letters, 44(23): 11792-11799. doi: 10.1002/2017GL075722
    Liu S L, Zhang D, Zhang P S, et al. 2016. Deformation monitoring of overburden based on distributed optical fiber sensing[J]. Journal of Engineering Geology, 24 (6): 1118-1125. http://www.en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201606011.htm
    López-Higuera J M. 2017. Smart photonic sensors for real structures supervision[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Lu Y, Yu J, Gong X L, et al. 2018. Experimental study on distributed monitoring of ground collapse deformation based on BOFDA[J]. Geological Journal of China Universities, 24(5): 778-786. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201805015
    Méndez A. 2017. Overview of structural health monitoring using fiber optic sensors[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Michlmayr G, Chalari A, Clarke A, et al. 2017. Fiber-optic high-resolution acoustic emission(AE)monitoring of slope failure[J]. Landslides, 14 (3): 1139-1146. doi: 10.1007/s10346-016-0776-5
    Minardo A, Coscetta A, Catalano E, et al. 2017. Simultaneous strain and temperature measurements by dual wavelength Brillouin sensors[J]. IEEE Sensors Journal, 17 (12): 3714-3719. doi: 10.1109/JSEN.2017.2698001
    Minardo A, Coscetta A, Porcaro G, et al. 2015. Structural health monitoring in the railway field by fiber-optic sensors[M]. Sensors(Lecture Notes in Electrical Engineering). Cham, Switzerland: Springer: 359-363.
    Nöther N. 2017. Getting the whole picture-distributed fiber-optic sensing as a powerful tool for industrial and geotechnical monitoring[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Pei H, Zhu B, Wang L. 2017. The novel monitoring technologies in geotechnical slope projects based on FBG and MEMS[C]//Proceedings of 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo- Engineering. Nanjing: Nanjing University: 136-141.
    Pelecanos L, Soga K. 2017. The use of distributed fibre-optic strain data to develop finite element models for foundation piles[C]//Proceedings of 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo- Engineering. Nanjing: Nanjing University: 32-40.
    Ruiz-Lombera R, Piccolo A, Rodriguez-Cobo L, et al. 2017. Feasibility study of strain and temperature discrimination in a BOTDA system via artificial neural networks[C]//Proceeding of SPIE, 25th International Conference on Optical Fiber Sensors. [S.L.]: IEEE: 103237Z.
    Schenato L, Palmieri L, Camporese M, et al. 2017. Distributed optical fibre sensing for early detection of shallow landslides triggering[J]. Scientific Reports, 7:14686. doi: 10.1038/s41598-017-12610-1
    Schenato L, Pasuto A, Galtarossa A, et al. 2018. On the use of OFDR for high-spatial resolution strain measurements in mechanical and geotechnical engineering[C]//Proceedings of the 2018 IEEE International Instrumentation and Measurement Technology Conference(I2MTC). [S.L.]: IEEE: 8409772.
    Shi B. 2017. On the ground sensing system and ground sensing engineering[J]. Journal of Engineering Geology, 25 (3): 582-591. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201808001
    Shi B, Gu K, Wei G Q, et al. 2018. Full section monitoring of land subsidence borehole using distributed fiber optic sensing techniques[J]. Journal of Engineering Geology, 26 (2): 356-364. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201802011
    Shi B, Zhang D, Zhu H H. 2019. Distributed Fiber Optic Sensing for Geoengineering Monitoring[M]. Beijing: Science Press.
    Sun T. 2017. Novel sensor design and implementation driven by applications[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Sun Y J, Xu H Z, Shi B. 2017. OFDR based theoretical analysis and experiment study on strain transferring of surface-attached optical fiber sensor[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo- Engineering. Nanjing: Nanjing University: 317-322.
    Thévenaz L. 2017. Recent progresses and challenges to upgrade the distributed Brillouin sensor performance[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Todd M D, Yeager M, Key C, et al. 2017. Composite laminate impact detection and localization using embedded fiber Bragg gratings[C]// Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo- Engineering. Nanjing: Nanjing University: 74-83.
    Wang M, Li Q, Tong R. 2017. Parallel spiral transimission line used in ground displacement measurement[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo- Engineering. Nanjing: Nanjing University: 84-87.
    Wu J, Jiang H, Su J, et al. 2015. Application of distributed fiber optic sensing technique in land subsidence monitoring[J]. Journal of Civil Structural Health Monitoring, 5 (5): 587-597. doi: 10.1007/s13349-015-0133-8
    Xie X Y. 2017. Numerical modeling and FBG monitoring of settlements of existed tunnel due to twin curve shield tunnelling in Shanghai soft clay[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Xing Y K, Zhang G Q, Yang X, et al. 2017. Fracture of sandstone characterized by fiber Bragg grating, digital imaging correlation and acoustic emission[C]//Proceedings of 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo- Engineering. Nanjing: Nanjing University: 147-155.
    Xu D S, Zhang Y M, Liu H B, et al. 2017. Deformation monitoring of metro tunnel with a new ultrasonic-based system[J]. Sensors, 17: 1758. doi: 10.3390/s17081758
    Xu X, Soga K, Nawaz S, et al. 2015. Performance monitoring of timber structures in underground construction using wireless SmartPlank[J]. Smart Structures and Systems, 15 (3): 769-785. doi: 10.12989/sss.2015.15.3.769
    Yang Y W. 2017. Wireless FBG sensing for civil engineering applica-tions[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Yang Z J, Shao W, Uchimura T, et al. 2017. Study on early warning system of MEMS based multi-source wirelss monitoring for rainfall-induced landslides[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo- Engineering. Nanjing: Nanjing University: 41-47.
    Yin J H, Qin J Q, Tan D Y, et al. 2018. Monitoring a flexible barrier under the impact of large boulder and granular flow using conventional and optical fibre sensors[C]//Proceedings of China-Europe Conference on Geotechnical Engineering. Cham, Switzerland: Springer: 755-758.
    Yu X. 2017. Development and application of innovative time domain reflectometry technologies for civil infrastructure[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Yue Z Q. 2017. Challenges and issues in monitoring and pre-warning of disastrous landslides illustrated with case studies[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    Zhang C, Ni Y Q, Zhou L, et al. 2017. A new railway tunnel deformation monitoring system using FBG bending gauges[C]//Proceedings of 2017 World Congress on Advances in Structural Engineering and Mechanics. Seoul, Korea: W5C-05.
    Zhang C C, Shi B, Gu K, et al. 2018. Vertically distributed sensing of deformation using fiber optic sensing[J]. Geophysical Research Letters, 45(21): 11732-11741. doi: 10.1029/2018GL080428
    Zhang C C, Zhu H H, Shi B, et al. 2016. Performance evaluation of soil-embedded plastic optical fiber sensors for geotechnical monitoring[J]. Smart Structures and Systems, 17(2): 297-311. doi: 10.12989/sss.2016.17.2.297
    Zhang Q, Hao W, Li S, et al. 2017. A study on the application of distributed optical fiber sensing technology used in deep-well temperature measurement[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo- Engineering. Nanjing: Nanjing University: 302-306.
    Zhang W T, Huang W Z, Luo Y B, et al. 2017. High-precision fiber earth deformation sensor[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo- Engineering. Nanjing: Nanjing University: 307-309.
    Zhang X P. 2017. The new fully distributed fiber monitoring technology for urban underground infrastructure[C]//Proceedings of the 6th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering. Nanjing: Nanjing University.
    柴敬, 霍晓斌, 钱云云, 等. 2018.采场覆岩变形和来压判别的分布式光纤监测模型试验[J].煤炭学报, 43 (S1): 36-43. http://d.old.wanfangdata.com.cn/Periodical/mtxb2018z1005
    程刚, 施斌, 张平松, 等. 2017.采动覆岩变形分布式光纤物理模型试验研究[J].工程地质学报, 25 (4): 926-934. doi: 10.13544/j.cnki.jeg.2017.04.005
    侯公羽, 谢冰冰, 江玉生, 等. 2017.用于巷道沉降变形监测的光纤锯齿状布设技术与原理[J].岩土力学, 38 (S1): 96-102. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1013.htm
    刘少林, 张丹, 张平松, 等. 2016.基于分布式光纤传感技术的采动覆岩变形监测[J].工程地质学报, 24 (6): 1118-1125. doi: 10.13544/j.cnki.jeg.2016.06.011
    卢毅, 于军, 龚绪龙, 等. 2018.基于BOFDA的地面塌陷变形分布式监测模型试验研究[J].高校地质学报, 24(5): 778-786. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201805015
    施斌. 2017.论大地感知系统与大地感知工程[J].工程地质学报, 25 (3): 582-591. doi: 10.13544/j.cnki.jeg.2017.03.002
    施斌, 顾凯, 魏广庆, 等. 2018.地面沉降钻孔全断面分布式光纤监测技术[J].工程地质学报, 26 (2): 356-364. doi: 10.13544/j.cnki.jeg.2018-104
    施斌, 张丹, 朱鸿鹄. 2019.地质与岩土工程分布式光纤监测技术[M].北京:科学出版社.
    孙义杰, 徐洪钟, 施斌. 2017.基于OFDR技术的表面粘贴光纤传感器应变传递性能分析与试验研究[C]//第六届地质(岩土)工程光电传感监测国际论坛论文集.南京: 南京大学, 317-322.
    张青, 郝文杰, 李胜涛, 等. 2017.分布式光纤深孔测温试验研究[C]//第六届地质(岩土)工程光电传感监测国际论坛论文集.南京: 南京大学: 302-306.
    张文涛, 黄稳柱, 罗英波, 等. 2017.高精度光纤地形变传感器[C]//第六届地质(岩土)工程光电传感监测国际论坛论文集.南京: 南京大学: 307-309.
  • 加载中
图(8)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  85
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-26
  • 修回日期:  2018-11-08
  • 发布日期:  2020-02-25

目录

    /

    返回文章
    返回