留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珊瑚颗粒形状对钙质粗粒土的压缩性能影响

张斌 柴寿喜 魏厚振 孟庆山 陈杨

张斌, 柴寿喜, 魏厚振, 孟庆山, 陈杨. 珊瑚颗粒形状对钙质粗粒土的压缩性能影响[J]. 机械工程学报, 2020, 28(1): 85-93. doi: 10.13544/j.cnki.jeg.2019-016
引用本文: 张斌, 柴寿喜, 魏厚振, 孟庆山, 陈杨. 珊瑚颗粒形状对钙质粗粒土的压缩性能影响[J]. 机械工程学报, 2020, 28(1): 85-93. doi: 10.13544/j.cnki.jeg.2019-016
ZHANG Bin, CHAI Shouxi, WEI Houzhen, MENG Qingshan, CHEN Yang. INFLUENCE OF CORAL SAND PARTICLE SHAPE ON THE COM ̄PRESSION PROPERTY OF COARSE GRAINED CALCAREOUS SOIL[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 28(1): 85-93. doi: 10.13544/j.cnki.jeg.2019-016
Citation: ZHANG Bin, CHAI Shouxi, WEI Houzhen, MENG Qingshan, CHEN Yang. INFLUENCE OF CORAL SAND PARTICLE SHAPE ON THE COM ̄PRESSION PROPERTY OF COARSE GRAINED CALCAREOUS SOIL[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 28(1): 85-93. doi: 10.13544/j.cnki.jeg.2019-016

珊瑚颗粒形状对钙质粗粒土的压缩性能影响

doi: 10.13544/j.cnki.jeg.2019-016
基金项目: 

中国科学院战略性先导科技专项 XDA19060301

中国科学院战略性先导科技专项 XDA13010201

国家自然科学基金 41877260

国家自然科学基金 41877267

天津市自然科学基金 17JCZDJC39200

天津市自然科学基金 17JCYBJC22200

详细信息
    作者简介:

    张斌(1992-), 男, 硕士生, 主要从事钙质粗粒土的工程力学特性研究工作.E-mail:747025917@qq.com

    通讯作者:

    魏厚振(1980-), 男, 博士, 副研究员, 主要从事珊瑚岛礁岩土力学与工程研究.E-mail:hzwei@whrsm.ac.cn

  • 中图分类号: P642.3

INFLUENCE OF CORAL SAND PARTICLE SHAPE ON THE COM ̄PRESSION PROPERTY OF COARSE GRAINED CALCAREOUS SOIL

Funds: 

the Strategic Priority Research Program of the Chinese Academy of Sciences XDA19060301

the Strategic Priority Research Program of the Chinese Academy of Sciences XDA13010201

National Natural Science Foundation of China 41877260

National Natural Science Foundation of China 41877267

Natural Science Foundation of Tianjin 17JCZDJC39200

Natural Science Foundation of Tianjin 17JCYBJC22200

  • 摘要: 珊瑚颗粒形状不规则是其显著区别于陆源土的一大特征。为揭示珊瑚颗粒形状对钙质粗粒土压缩性能的影响,人工挑选出不同形状(块状、枝状、棒状、片状)的珊瑚颗粒,以块状颗粒为基础,与其他3种不同形状的粗颗粒任意一种混合,控制不同颗粒形状配比制成钙质粗粒土试样,完成室内压缩试验,对比分析试验前后珊瑚颗粒的圆度、长宽比、扁平度和凹凸度等形状参数,评价颗粒形状对压缩性能的影响。结果表明:(1)粒径为10~20 mm钙质粗粒土的压缩模量是4~5.5MPa,回弹系数为42~53;(2)随枝状、棒状或片状颗粒掺量的增加(0、10%、20%、30%),试样压缩模量呈小幅波状变化,回弹系数呈持续减小趋势;(3)各加载区间应力-应变曲线包括应力快速增长阶段、应力-应变同步增长阶段、应变增长阶段共3个阶段和1个稳定点;(4)随枝状颗粒掺量的增加,试样的长宽比和凹凸度逐渐增加,圆度和扁平度基本无变化;因颗粒破碎的影响,试验后试样的长宽比及扁平度有所增加,圆度及凹凸度则有所减小。选择钙质粗粒土地基时,应考虑其压缩性能,避免施工初期的快速加载。

     

  • 图  压缩装置示意图

    Figure  1.  Schematic diagram of compression device

    图  颗粒下落过程中的系列扫描图

    Figure  2.  A series of scanning images of particles

    图  4种颗粒形状图

    Figure  3.  Four particle shapes

    图  不规则颗粒尺寸参数图示

    Figure  4.  Graphical representation of dimension parameters of irregular particles

    图  分选后颗粒形状的分布直方图

    Figure  5.  Distribution histogram of particle shapes after separation

    图  不同棒状颗粒掺量的试样(S1~S4)e-lgP曲线

    Figure  6.  The e-lgP curves of samples(S1~S4)with different rod particle contents

    图  不同掺量试样(S1~S10)压缩模量

    Figure  7.  Compression modulus of samples(S1~S10)with different mass ratio of particles

    图  不同掺量试样(S1~S10)回弹系数

    Figure  8.  Rebound coefficients of samples in different dosage(S1~S10)

    图  S1试样(100%块状)的应力-应变曲线

    Figure  9.  Stress-strain curve of sample S1(100%block)

    图  10  各加载阶段S1试样的应力-应变曲线

    a. 0~50kPa的应力-应变;b. 50~100kPa的应力-应变;c. 100~200kPa的应力-应变;d. 200~400kPa的应力-应变;e. 400~800kPa的应力-应变

    Figure  10.  Stress-strain curves of sample S1(100%block) in each loading stage

    图  11  S1、S5、S6和S7试样压缩前后长宽比与扁平度平均值

    Figure  11.  Average values of ratio of length to width and flatness before and after compression test for samples S1, S5, S6 and S7

    图  12  S1试样(100%块状)压缩前后的长宽比与扁平度概率密度曲线

    Figure  12.  The probability density curves of aspect ratio and flatness of sample S1(100% block) before and after compression test

    图  13  压缩前后的枝状颗粒和块状颗粒

    a.压缩前的枝状颗粒;b.压缩后的枝状颗粒;c.压缩前的块状颗粒;d.压缩后的块状颗粒

    Figure  13.  Pictures of dendritic and block particles before and after compression test

    图  14  S1、S5、S6和S7试样压缩前后圆度与凹凸度平均值

    Figure  14.  Average values of roundness and convexity before and after compression tests for samples S1, S5, S6 and S7

    图  15  S1试样(100%块状)压缩前后的圆度与凹凸度概率密度曲线

    Figure  15.  The probability density curves of roundness and convexity of sample S1(100%block) before and after compression test

    表  1  干燥钙质粗粒土试样的物理性质指标

    Table  1.   Physical indices of dry coarse grained calcareous soil

    颗粒粒径/mm 比重 干密度/g·cm-3 初始孔隙比
    10~20 2.78 0.87 2.195
    下载: 导出CSV

    表  2  4种形状颗粒组合试样的质量百分比

    Table  2.   The mass ratio of four shapes particles of the combined samples

    S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
    块状/% 100 90 80 70 90 80 70 90 80 70
    棒状/% 0 10 20 30 0 0 0 0 0 0
    枝状/% 0 0 0 0 10 20 30 0 0 0
    片状/% 0 0 0 0 0 0 0 10 20 30
    下载: 导出CSV

    表  3  不规则颗粒尺寸参数

    Table  3.   Dimension parameters of irregular particles

    符号 描述
    面积 A 3D图像中面积的平均值
    周长 P 3D图像中周长的平均值
    Feret长度 FL 最大费雷特长
    Feret宽度 FW 最大费雷特宽
    Feret厚度 FT 最小费雷特宽
    凸面积 CHA 3D图像中,通过填补后颗粒面积的平均值
    下载: 导出CSV

    表  4  分选前颗粒形状参数的统计结果

    Table  4.   Statistical results of particle shape parameters before separation

    圆度 长宽比 扁平度 凹凸度
    平均值 0.425 1.629 1.782 0.070
    标准差 0.118 0.461 0.798 0.041
    变异系数 0.278 0.283 0.448 0.580
    集合区间 0.423~0.428 1.619~1.638 1.765~1.799 0.069~0.071
    集合区间长 0.005 0.019 0.034 0.002
    偏态系数SK 0.003 2.122 2.519 1.455
    峰态系数KU -0.558 7.208 10.570 2.894
    偏态类型 负偏态 正偏态 正偏态 正偏态
    下载: 导出CSV
  • Cavarretta I, Coop M, O'Sullivan C. 2010. The influence of particle characteristics on the behaviour of coarse grained soils[J]. Géotechnique, 60(6): 413-423. doi: 10.1680/geot.2010.60.6.413
    Chen H D, Wei H Z, Meng Q S, et al. 2018. The study on stress-strain strength behavior of calcareous sand with particle breakage[J]. Journal of Engineering Geology, 26(6): 1490-1498. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806012
    Feng X B, Xi Y, Song D Q, et al. 2016. PFC2D based fractal model for tensile strength and breakage energy of rock particle crushing[J]. Journal of Engineering Geology, 24(4): 629-634. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201604019
    Guo P J, Su X B. 2007. Shear strength, interparticle locking, and dilatancy of granular materials[J]. Canadian Geotechnical Journal, 44(5): 579-591. doi: 10.1139/t07-010
    Georgoutsos G, BodasFreitas T, Sorensen K K, et al. 2004. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157
    Kim S H, Kim N. 2007. Micromechanics analysis of granular soils to estimate inherent anisotropy[J]. KSCE Journal of Civil Engineering, 11(3): 145-149. doi: 10.1007/BF02823894
    Kwan A K H, Mora C F, Chan H C. 1999. Particle shape analysis of coarse aggregate using digital image processing[J]. Cement and Concrete Research, 29(9): 1403-1410. doi: 10.1016/S0008-8846(99)00105-2
    Liu Q B, Xiang W, Budhu M, et al. 2011. Study of particle shape quantification and effect on mechanical property of sand[J]. Rock and Soil Mechanics, 32 (S1): 190-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8823227
    Mark L H, Neil W P. 2003. Selection of descriptors for particle shape characterization[J]. Particle and Particle System Characterization, 20 (1): 25~38. doi: 10.1002/ppsc.200390002
    Meng Q S, Qin Y, Wang R. 2012. Liquefaction characteristics and mechanism of coral reef sediments[J]. Soil Engineering and Foundation, 26(1): 21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tgjc201201007
    Mora C F, Kwan A K H. 2000. Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing[J]. Cement and Concrete Research, 30(3): 351-358. doi: 10.1016/S0008-8846(99)00259-8
    Qin Y, Yao T, Wang R, et al. 2014. Particle breakage-based analysis of deformation law of calcareous sediments under high-pressure consolidation[J]. Rock and Soil Mechanics, 35(11): 3123-3128. http://d.old.wanfangdata.com.cn/Periodical/ytlx201411012
    Rouse P, Fannin R, Shuttle D. 2008. Influence of roundness on the void ratio and strength of uniform sand[J]. Géotechnique, 58(3): 227-231. doi: 10.1680/geot.2008.58.3.227
    Tsomokos A, Georgiannou V N. 2010. Effect of grain shape and angularity on the undrained response of fine sands[J]. Canadian Geotechnical Journal, 47(5): 539-551. doi: 10.1139/T09-121
    Wang X Z, Wang R, Meng Q S, et al. 2009. Study of plate load test of calcareous sand[J]. Rock and Soil Mechanics, 31 (1): 147-151, 156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200901025
    Wang X Z, Jiao Y Y, Wang R, et al. 2011. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea[J]. Engineering Geology, 120(1-4): 40-47. doi: 10.1016/j.enggeo.2011.03.011
    Xu Y F. 2018. PFC2D simulation of rockfill shear strength based on particle fragmentation[J]. Journal of Engineering Geology, 26(6): 1409-1414. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806001
    Xu X Y, Wang R, Wang X Z, et al. 2012. Experimental study of dynamic behavior of saturated calcareous sand due to explosion[J]. Rock and Soil Mechanics, 33(10): 2953-2959. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201210012
    Yang J, Luo X D. 2015. Exploring the relationship between critical state and particle shape for granular materials[J]. Journal of the Mechanics and Physics of Solids, 84 : 196-213. doi: 10.1016/j.jmps.2015.08.001
    Zhang J F, Ye J B, Chen J S, et al. 2016. A preliminary study of measurement and evaluation of break stone grain shape[J]. Rock and Soil Mechanics, 37(2): 343-348. doi: 10.16285/j.rsm.2016.02.005
    陈火东, 魏厚振, 孟庆山, 等. 2018.颗粒破碎对钙质砂的应力-应变及强度影响研究[J].工程地质学报, 26(6): 1490-1498. doi: 10.13544/j.cnki.jeg.2017-519
    冯兴波, 奚悦, 宋丹青, 等. 2016.基于PFC2D岩石颗粒破碎强度和能量的分形模型[J].工程地质学报, 24(4): 629-634. doi: 10.13544/j.cnki.jeg.2016.04.019
    刘清秉, 项伟, Budhu M, 等. 2011.砂土颗粒形状量化及其对力学指标的影响分析[J].岩土力学, 32 (S1): 190-197. http://d.old.wanfangdata.com.cn/Conference/8823227
    孟庆山, 秦月, 汪稔. 2012.珊瑚礁钙质沉积物液化特性及其机理研究[J].土工基础, 26(1): 21-24. doi: 10.3969/j.issn.1004-3152.2012.01.007
    秦月, 姚婷, 汪稔, 等. 2014.基于颗粒破碎的钙质沉积物高压固结变形分析[J].岩土力学, 35(11): 3123-3128. http://d.old.wanfangdata.com.cn/Periodical/ytlx201411012
    王新志, 汪稔, 孟庆山, 等. 2009.钙质砂室内载荷试验研究[J].岩土力学, 31 (1): 147-151, 156. doi: 10.3969/j.issn.1000-7598.2009.01.025
    徐永福. 2018.基于颗粒破碎的粗粒土剪切强度的模拟分析[J].工程地质学报, 26(6): 1409-1414. doi: 10.13544/j.cnki.jeg.2017-432
    徐学勇, 汪稔, 王新志, 等. 2012.饱和钙质砂爆炸响应动力特性试验研究[J].岩土力学, 33(10): 2953-2959. http://d.old.wanfangdata.com.cn/Periodical/ytlx201210012
    张家发, 叶加兵, 陈劲松, 等. 2016.碎石颗粒形状测量与评定的初步研究[J].岩土力学, 37(2): 343-349. http://d.old.wanfangdata.com.cn/Periodical/ytlx201602005
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  97
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-09
  • 修回日期:  2019-09-29
  • 发布日期:  2020-02-25

目录

    /

    返回文章
    返回