THEORY AND METHOD OF MONITORING AND EARLY WARNING FOR SUDDEN LOESS LANDSLIDE—A CASE STUDY AT HEIFANGTAI TERRACE
-
摘要: 灌溉诱发的黄土滑坡大多数具有明显的突发性特征;斜坡破坏过程变形量小,历时短,具有较大的危险性。由于此类黄土滑坡加速变形阶段经历时间较短,GNSS系统和裂缝计等传统监测手段难以获取加速变形阶段系统完整的监测数据,更难以提前预警。针对这一难题,自主研发了自适应智能变频裂缝仪,它能够根据滑坡变形快慢自动调整采样频率。基于获取的黑方台多个突发型黄土滑坡的全过程变形-时间曲线,对这些变形曲线特征和规律进行分析研究,建立了针对性的黄土滑坡综合预警模型。将变形速率阈值和改进切线角作为滑坡预警的重要指标,建立了4级预警判据,通过自主研发的“地质灾害实时监测预警系统”实现滑坡的实时自动预警,并将预警信息与当地的群防群测信息平台对接,为防灾应急避让提供直接依据。2017年以来已先后6次对黑方台黄土滑坡实施成功预警,避免了重大人员伤亡,取得显著的防灾减灾效果。Abstract: Most of the loess landslides induced by irrigation own obvious sudden characteristics. The deformation and displacement during slope failure process are small and the time of duration is short, which is of great risk. Due to such loess landslides undergo a short time in accelerated deformation stage, it is difficult for traditional monitoring methods, such as GNSS system and crack gauge, to obtain complete monitoring data in accelerated deformation stage and to predict the sudden landslide occurrence. With respect to this problem, a self-adaptive frequency conversion acquisition monitoring method is designed to monitor the deformation of sudden loess landslides, which adjust automatically the frequency sampling according to the speed of landslide deformation. To meet the needs for risk mitigation and management of slope sudden failure, it is of practical significance to develop a self-adaptive frequency conversion acquisition monitoring method and establish a real-time automatic early warning system. The new artificial intelligence by the authors' institute can obtain entire monitoring data in accelerated deformation stage and to predict the sudden failure occurrence time. Taking deformation rate threshold and the improved tangent angle as the early warning parameters of comprehensive warning model, a four-level early warning criterion is established. The real-time automatic early warning of the landslide is realized through the self-developed "real-time monitoring and early warning system of geological hazards". The early warning information is released in the local group defense information platform, which provides a direct gauge for disaster prevention and emergency avoidance. Since 2017, it has been successfully warned six times of loess slope sudden failure on the Heifangtai terrace, which avoided heavy casualties and achieved remarkable disaster prevention and mitigation effect.
-
Key words:
- Real-time monitoring /
- Early warning /
- Sudden landslide /
- Loess landslide /
- Early warning criterion
-
图 8 预警系统警报发布流程(Huang et al., 2015)
Figure 8. Alert publishing flow of the early warning system
表 1 基于变形速率阈值和变形过程综合预警判据
Table 1. Comprehensive early warning model based on deformation rate threshold and deformation process
变形阶段 初始变形阶段 匀速变形阶段 初加速阶段 中加速阶段 临滑阶段 预警指标 第1步 变形速率/V V < V1 V1≤V < V2 V2≤V < V3 V≥V3 变形速率增量/ΔV ΔV < 0 ΔV≈0 ΔV>0 第2步 切线角/a a < 45° a ≈45° 45° < a < 80° 80°≤a < 85° a≥85° 危险性预警级别 — 其中,V1=3mm·d-1,V2=10mm·d-1和V3=20mm·d-1 表 2 党川4#突发型黄土滑坡成功预警的过程
Table 2. Successful early warning process for the DC4# sudden loess landslide
预警时间 预警判据 预警等级 应急处理 切线角a
/(°)变形速率V
/mm·d-1速率增量ΔV
/mm·d-12017-8-26 15:00 64.57 3.36 0.038 注意级 以短信、微信形式给专家、镇政府及相关人员发布蓝色预警信息,每天检查数据,每周发布监控公告 2017-9-26 21:00 76.92 10.30 0.104 警示级 以短信、微信形式给专家、镇政府及相关人员发布黄色预警信息,每天检查数据,每周发布监控公告,群防群测人员加密监测 2017-9-30 05:00 82.44 20.14 0.349 警戒级 以短信、微信、电话形式给专家、镇政府及相关人员发布橙色预警信息,每天24 h进行连续的综合监测和全面检查,专家磋商和讨论滑坡发展态势 2017-9-30 17:50 85.08 30.62 0.462 警报级 以短信、微信、电话形式给专家、镇政府及相关人员发布红色预警信息;更频繁地检查数据,主干道封闭,当地人员被通知,进行24 h全面监测,专家磋商和讨论滑坡发展态势 2017-9-30 20:55 87.33 62.07 1.592 以电话方式正式向镇政府及相关人员发布红色预警信息,当地政府采用必要的紧急疏散和快速应急工作 -
Dong W W, Zhu H H, Sun Y J, et al. 2016. Current status and new progress on slope deformation monitoring technologies[J]. Journal of Engineering Geology, 24(6): 1088-1095. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201606008 Dong X J, Xu Q, Tang C, et al. 2015. Characteristics of landslide displacement-time curve by physical simulation experiment[J]. Journal of Engineering Geology, 23(3): 401-407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201503005 He C Y, Xu Q, Ju N P, et al. 2018. Real-time early warning technology of debris flow based on automatic identification of rainfall process[J]. Journal of Engineering Geology, 26(3): 703-710. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201803018 Huang G W, Huang G W, Du Y, et al. 2018. A lowcost real-time monitoring system for landslide deformation with Beidou cloud[J]. Journal of Engineering Geology, 26(4): 1008-1016. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201804021.htm Huang J, Huang R Q, Ju N P, et al. 2015.3D WebGIS-based platform for debris flow early warning: A case study[J]. Engineering Geology, 197 : 57-66. doi: 10.1016/j.enggeo.2015.08.013 Huang R Q, Huang J, Ju N P, et al. 2013. WebGIS-based information management system for landslides triggered by Wenchuan earthquake[J]. Natural Hazards, 65(3): 1507-1517. doi: 10.1007/s11069-012-0424-x Intrieri E, Gigli G, Mugnai F, et al. 2012. Design and implementation of a landslide early warning system[J]. Engineering Geology, 147-148 : 124-136. doi: 10.1016/j.enggeo.2012.07.017 Liu C Z. 2019. Analysis methods on the risk identification of landslide disasters[J]. Journal of Engineering Geology, 27(1): 88-97. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201901010 Peng D L, Xu Q, Liu F Z, et al. 2018. Distribution and failure modes of the landslides in Heitai terrace, China[J]. Engineering Geology, 236 : 97-110. doi: 10.1016/j.enggeo.2017.09.016 Peng D L, Xu Q, Zhang X L, et al. 2019. Hydrological response of loess slopes with reference to widespread landslide events in the Heifangtai terrace, NW China[J]. Journal of Asian Earth Sciences, 171 : 259-276. doi: 10.1016/j.jseaes.2018.12.003 Peng J B, Lin H Z, Wang Q Y, et al. 2014. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 22(4): 684-691. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201404018 Qi X. 2017. Sudden loess landslide monitoring and early warning research-a case study of Gansu landslide in Heifangtai loess[D]. Chengdu: Chengdu University of Technology. Wu F Q, Sha P. 2019. Achievements of engineering geology in China and the mission in the new era-A review on 2018 Annual Symposiun of Engineering Geology of China[J]. Journal of Engineering Geology, 27(1): 184-194. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901020.htm Xu Q, Dong X J, Li W L. 2019. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 44(7): 957-966. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201907003 Xu Q, Huang R Q, Li X Z. 2004. Research progress in time forecast and prediction of landslides[J]. Advance in Earth Sciences, 19(3): 478-483. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200403021 Xu Q, Peng D L, Li W L, et al. 2016. Study on formation mechanism of diffuse failure landslide[J]. Journal of Southwest Jiaotong University, 51(5): 995-1004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnjtdxxb201605024 Xu Q, Tang M G, Huang R Q. 2015. Monitoring, early warning and emergency disposition for large-scale landslides[M]. Beijing: Science Press. Xu Q, Tang M G, Xu K X, et al. 2008. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 27(6): 1104-1112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200806003 Xu Q, Yuan Y, Zeng Y P, et al. 2011. Some new pre-warning criteria for creep slope failure[J]. Science China Technological Sciences, 54 (S1): 210-220. doi: 10.1007/s11431-011-4640-5 Xu Q, Zeng Y P, Qian J P, et al. 2009. Study on a improved tangential angle and the corresponding landslide pre-warning criteria[J]. Geological Bulletin of China, 28(4): 501-505. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200904011 Xu Q, Zheng G, Li W L, et al. 2018. Study on successive landslide damming events of Jiasha River in Baige Village on October 11 and November 3, 2018[J]. Journal of Engineering Geology, 26(6): 1534-1551. Xu Q. 2012. Theoretical studies on prediction of landslides using slope deformation process data[J]. Journal of Engineering Geology, 20(2): 145-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201202001 Yin Y P, Wang H D, Gao Y L, et al. 2010. Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China[J]. Journal of Southeast Asian Applied Geology, 2(3): 170-184. doi: 10.1007%2Fs10346-010-0220-1 Zhu X, Xu Q, Qi X, et al. 2017. A self-adaptive data acquisition technique and its application in landslide monitoring[C]//Miko M, Arbanas, Yin Y, et al. 2017. Advancing Culture of Living with Landslides. WLF2017. Springer, Cham. 董文文, 朱鸿鹄, 孙义杰, 等. 2016.边坡变形监测技术现状及新进展[J].工程地质学报, 24(6): 1088-1095. doi: 10.13544/j.cnki.jeg.2016.06.007 董秀军, 许强, 唐川, 等. 2015.滑坡位移-时间曲线特征的物理模拟试验研究[J].工程地质学报, 23(3): 401-407. doi: 10.13544/j.cnki.jeg.2015.03.005 何朝阳, 许强, 巨能攀, 等. 2018.基于降雨过程自动识别的泥石流实时预警技术[J].工程地质学报, 26(3): 703-710. doi: 10.13544/j.cnki.jeg.2017-189 黄观文, 黄观武, 杜源, 等. 2018.一种基于北斗云的低成本滑坡实时监测系统[J].工程地质学报, 26(4): 1008-1016. doi: 10.13544/j.cnki.jeg.2017-394 刘传正. 2019.崩塌滑坡灾害风险识别方法初步研究[J].工程地质学报, 27(1): 88-97. doi: 10.13544/j.cnki.jeg.2019-009 彭建兵, 林鸿州, 王启耀, 等. 2014.黄土地质灾害研究中的关键问题与创新思路[J].工程地质学报, 22(4): 684-691. doi: 10.13544/j.cnki.jeg.2014.04.014 亓星. 2017.突发型黄土滑坡监测预警研究-以甘肃黑方台黄土滑坡为例[D].成都: 成都理工大学. 伍法权, 沙鹏. 2019.中国工程地质学科成就与新时期任务-2018年全国工程地质年会学术总结[J].工程地质学报, 27(1): 184-194. doi: 10.13544/j.cnki.jeg.2018-407 许强, 董秀军, 李为乐. 2019.基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J].武汉大学学报(信息科学版), 44(7): 957-966. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201907003 许强, 黄润秋, 李秀珍. 2004.滑坡时间预测预报研究进展[J].地球科学进展, 19(3): 478-483. doi: 10.3321/j.issn:1001-8166.2004.03.021 许强, 彭大雷, 李为乐, 等. 2016.溃散性滑坡成因机理初探[J].西南交通大学学报, 51(5): 995-1004. doi: 10.3969/j.issn.0258-2724.2016.05.024 许强, 汤明高, 黄润秋. 2015.大型滑坡监测预警与应急处置[M].北京:科学出版社. 许强, 汤明高, 徐开祥, 等. 2008.滑坡时空演化规律及预警预报研究[J].岩石力学与工程学报, 27(6): 1104-1112. doi: 10.3321/j.issn:1000-6915.2008.06.003 许强, 曾裕平, 钱江澎, 等. 2009.一种改进的切线角及对应的滑坡预警判据[J].地质通报, 28(4): 501-505. doi: 10.3969/j.issn.1671-2552.2009.04.011 许强, 郑光, 李为乐, 等. 2018.2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J].工程地质学报, 26(6): 1534-1551. doi: 10.13544/j.cnki.jeg.2018-406 许强. 2012.滑坡的变形破坏行为与内在机理[J].工程地质学报, 20(2): 145-151. doi: 10.3969/j.issn.1004-9665.2012.02.001