留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于VG模型确定土水特征曲线基本参数

潘登丽 倪万魁 苑康泽 张镇飞 王熙俊

潘登丽, 倪万魁, 苑康泽, 张镇飞, 王熙俊. 基于VG模型确定土水特征曲线基本参数[J]. 机械工程学报, 2020, 28(1): 69-76. doi: 10.13544/j.cnki.jeg.2019-156
引用本文: 潘登丽, 倪万魁, 苑康泽, 张镇飞, 王熙俊. 基于VG模型确定土水特征曲线基本参数[J]. 机械工程学报, 2020, 28(1): 69-76. doi: 10.13544/j.cnki.jeg.2019-156
PAN Dengli, NI Wankui, YUAN Kangze, ZHANG Zhenfei, WANG Xijun. DETERMINATION OF SOIL-WATER CHARACTERISTIC CURVE VARIABLES BASED ON VG MODEL[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 28(1): 69-76. doi: 10.13544/j.cnki.jeg.2019-156
Citation: PAN Dengli, NI Wankui, YUAN Kangze, ZHANG Zhenfei, WANG Xijun. DETERMINATION OF SOIL-WATER CHARACTERISTIC CURVE VARIABLES BASED ON VG MODEL[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 28(1): 69-76. doi: 10.13544/j.cnki.jeg.2019-156

基于VG模型确定土水特征曲线基本参数

doi: 10.13544/j.cnki.jeg.2019-156
基金项目: 

陕西省重点研发计划项目 2017ZDXM-SF-087

陕西省重点研发计划项目 2019ZDLSF05-07

详细信息
    作者简介:

    潘登丽(1993-),女,硕士生,主要从事非饱和土特性研究. E-mail:120072925@qq.com

    通讯作者:

    倪万魁(1965-), 男, 博士, 教授, 博士生导师, 主要从事黄土工程地质的研究.E-mail:niwankui@chd.edu.cn

  • 中图分类号: TU443

DETERMINATION OF SOIL-WATER CHARACTERISTIC CURVE VARIABLES BASED ON VG MODEL

Funds: 

the Key Research and Development Program of Shaanxi Province 2017ZDXM-SF-087

the Key Research and Development Program of Shaanxi Province 2019ZDLSF05-07

  • 摘要: 土水特征曲线基本参数(进气值、残余吸力值和反弯点的斜率等)在非饱和土的强度理论、渗流理论以及体变特性等方面都是非常重要的参数,常常通过传统画图法来确定,其精确度难以保证。以洛川标准剖面4层原状黄土为研究对象,基于VG模型提出单峰和双峰SWCC基本参数的确定方法;采用滤纸法测得SWCC数据点,基于VG模型进行最优化拟合,获取拟合参数,利用单峰和双峰SWCC数据点验证该方法的可行性;进行自然状态下的水分蒸发试验,根据质量含水率与蒸发时间的关系确定蒸发残余饱和度Srzf,依据Sr1Sr2(Sr1Sr2分别由确定残余状态的两种方法得到)与Srzf的相对误差值,比较了两种确定残余状态的方法。结果表明:对于单峰和双峰SWCC曲线,该方法都可以得到合理的基本参数并有效地确定其残余状态。

     

  • 图  单峰土水特征曲线基本参数定义

    Figure  1.  Definitions of unimodal SWCC variables

    图  不同的反弯点会产生不同的进气值

    Figure  2.  Different inflection points will lead to different air-entry values

    图  双峰土水特征曲线基本参数定义

    Figure  3.  Definitions of bimodal SWCC variables

    图  基于本文方法确定单峰SWCC的基本参数

    a. L6;b. L7;c. L13

    Figure  4.  The variables of unimodal SWCC are determined based on the method in this paper

    图  洛川原状黄土L1的孔径分布图

    Figure  5.  Pore size distribution of Luochuan undisturbed loess L1

    图  基于本文方法确定双峰SWCC的基本参数

    Figure  6.  The variables of bimodal SWCC are determined based on the method in this paper

    图  洛川原状黄土蒸发试验结果

    Figure  7.  Evaporation test results of Luochuan undisturbed loess

    表  1  洛川原状黄土的基本物理性质

    Table  1.   Properties of Luochuan undisturbed loess

    层号 埋深
    /m
    含水量
    /%
    孔隙比 干密度
    /g·cm-3
    比重 饱和
    含水率ω
    液限
    /%
    塑限
    /%
    塑性
    指数
    颗粒组成/%
    细砂粒 粉粒 黏粒
    L6 43 12.10 0.81 1.50 2.72 32.5 29.0 16.5 12.5 9.17 78.54 12.29
    L7 48 14.40 0.75 1.54 2.72 30.1 30.1 19.6 11.2 1.32 72.83 25.85
    L13 72 9.76 0.74 1.55 2.72 29.4 31.0 19.4 11.6 5.05 81.75 13.20
    下载: 导出CSV

    表  2  单峰土水特征曲线的拟合参数和基本参数

    Table  2.   Best fitting parameters and variables of the unimodal SWCCs

    试验
    黄土
    拟合参数 R2 SWCC基本参数
    a n m ψaev I(ψi, Si) Ki R1(ψr1Sr1) R2(ψr2Sr2)
    L6 0.047 1.326 0.246 0.973 9.41 (61.29, 0.671) -0.404 (1002, 0.179) (1136, 0.156)
    L7 0.034 1.230 0.187 0.973 13.60 (114.96, 0.708) -0.316 (1346, 0.370) (3167, 0.255)
    L13 0.024 1.232 0.188 0.989 19.30 (161.57, 0.707) -0.318 (1627, 0.390) (3509, 0.284)
    下载: 导出CSV

    表  3  双峰土水特征曲线的拟合参数

    Table  3.   Bimodal SWCC best fitting parameters

    L1 拟合参数 R2
    a/kPa-1 n m
    10-1~ψd 0.161 1.283 0.221 0.964
    ψd~106 3E-4 1.436 0.304 0.991
    下载: 导出CSV

    表  4  双峰土水特征曲线的基本参数

    Table  4.   Bimodal SWCC variables

    10-1~ψd ψaev/kPa I(ψiSi) Ki R(ψrSr)
    2.79 (20,0.686) -0.366 (144.5,0.376)
    ψd~106 ψ′aev I′(ψiSi) K′i R1(ψr1Sr1) R2(ψr2Sr2)
    1344 (7096,0.239) -0.184 (29847,0.125) (50938,0.083)
    下载: 导出CSV

    表  5  Srzf值以及Sr1Sr2Srzf的相对误差计算结果

    Table  5.   Srzf values and the relative errors between Sr1Sr2 and Srzf

    土层 临残时间
    tr/h
    残余含水率
    ωr/%
    残余饱和度
    Srzf
    相对误差
    e1/%
    相对误差
    e2/%
    L1 33 4.52 0.111 12.8 25.1
    L6 33 6.91 0.232 22.9 32.8
    L7 33 7.22 0.262 41.3 2.6
    L13 33 5.49 0.202 93.3 40.7
    下载: 导出CSV

    表  6  试验黄土的主要矿物成分和含量

    Table  6.   The main mineral composition and content of the loess

    矿物 L1 L6 L7 L13
    石英 51.1 55.5 48.7 58.4
    方解石 15.2 12.3 15.4 13.1
    斜长石 7.7 11.8 19.0 10.4
    绿泥石 9.0 7.0 6.0 7.0
    伊利石 8.5 8.0 6.5 7.5
    下载: 导出CSV
  • Bates S, Jonaitis D, Nail S. 2013. Sucrose lyophiles: A semi-quantitative study of residual water content by total X-ray diffraction analysis[J]. European Journal of Pharmaceutics & Biopharmaceutics, 85(2): 184-188. http://cn.bing.com/academic/profile?id=a72e99edb282b7b251958a364e8493f6&encoded=0&v=paper_preview&mkt=zh-cn
    Bishop A W. 1959. The principle of effective stress[J]. Teknisk Ukeblad, 39: 859-863. http://d.old.wanfangdata.com.cn/Periodical/ytlx201801015
    Burdine N T. 1953. Relative permeability calculations from pore size distribution data[J]. Journal of Petroleum Technology, 5 : 71-78. doi: 10.2118/225-G
    Burton G, Sheng D, Campbell C. 2014. Bimodal pore size distribution of a high-plasticity compacted clay[J]. Géotechnique Letters, 4 : 88-93. doi: 10.1680/geolett.14.00003
    Childs E C, Collis-George N. 1950. The permeability of porous materials[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 201 : 392-405. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1211.6885
    Cook F J. 1991. Calculation of hydraulic conductivity from suction permeameter measurements[J]. Soil Science, 152(5): 321-325. doi: 10.1097/00010694-199111000-00002
    D18 Committee. 2016. Standard test method for measurement of soil potential(suction) using filter paper (ASTM D5298-16)[S]. West Conshohocken, PA.
    Fleureau J M, Kheirbeksaoud S, Soemitro R, et al. 1993. Behavior of clayey soils on drying-wetting paths[J]. Canadian Geotechnical Journal, 30(2): 287-296. doi: 10.1139/t93-024
    Fredlund D G. 2006. Unsaturated soil mechanics in engineering practice[J]. Journal of Geotechnical and Geoenvironmental Engineering, 132(3): 286-321. doi: 10.1061/(ASCE)1090-0241(2006)132:3(286)
    Gao Y, Sun D A. 2017. Determination of basic parameters of unimodal and bimodal soil water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 39(10): 1884-1891. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201710017
    Genuchten M T V. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 44(44): 892-898. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce45a331f64792c4e74d5a74039efdf6
    Jia B X, Wang H, Zhou L L, et al. 2018. Experimental study on soil-water characteristic curve of aeolian soil roadbed in western Liaoning Province[J]. Journal of Engineering Geology, 26(3): 633-638. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201803010
    Li T L, Fan J W, Xi Y, et al. 2019. Analysis for effect of microstructure on SWCC of compacted loess[J]. Journal of Engineering Geology, 27(5): 1019-1026. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201905010
    Li X, Li J H, Zhang L M. 2014. Predicting bimodal soil-water characteristic curves and permeability functions using physically based parameters[J]. Computers & Geotechnics, 57(4): 85-96. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232634239/
    Li Y F. 1994. Research on the relationships between permeability and porosity for loess[M]. Beijing: Geological Publishing House.
    Mualem Y. 1976. A new model for predicting hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 12(3): 513-522. doi: 10.1029/WR012i003p00513
    Rao H R H, Venkataramana K V, Singh D N S N. 2011. Studies on the determination of swelling properties of soils from suction measurements[J]. Revue Canadienne De Géotechnique, 48(3): 375-387. doi: 10.1139/T10-076
    Shi Z M, Liu W R, Peng M, et al. 2018. Experimental study on soil-water characteristic curve of reticulate red clay and its application in slope stability evaluation[J]. Journal of Engineering Geology, 26(1): 164-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201801019
    Sillers W S, Fredlund D G. 2001. Statistical assessment of soil-water characteristic curve models for geotechnical engineering[J]. Canadian Geotechnical Journal, 38(6): 1297-1313. doi: 10.1139/t01-066
    Sillers W S, Fredlund D G, Zakerzadeh N. 2001. Mathematical attributes of some soil-water characteristic curve models[M]. Springer Netherlands.
    Soltani A, Azimi M, An D, et al. 2017. A simplified method for determination of the soil-water characteristic curve variables[J]. International Journal of Geotechnical Engineering, (3): 1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/19386362.2017.1344450
    Tang C S, Shi B, Gu K. 2011. Experimental investigation on evaporation process of water in soil during drying[J]. Journal of Engineering Geology, 19(6): 875-881. http://cn.bing.com/academic/profile?id=2332a210d55ec12bbc15dbcd2bab3b21&encoded=0&v=paper_preview&mkt=zh-cn
    Tao G L, Li J, Zhuang X S, et al. 2018. Determination of the residual water content of SWCC based on the soil moisture evaporation properties and micro pore characteristics[J]. Rock and Soil Mechanics, 39(4): 1256-1262. http://d.old.wanfangdata.com.cn/Periodical/ytlx201804014
    Vanapalli S K, Fredlund D G, Pufahl D E, et al. 1996. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 33(3): 379-392. doi: 10.1139/t96-060
    Wang T H, Li Y L, Su L J. 2014. Types and boundaries of bound water on loess particle surface[J]. Chinese Journal of Geotechnical Engineering, 36(5): 942-948. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201405026
    Yuan Z H, Ni W K, Liu R, et al. 2015. Study of shear strength of unsaturated and undisturbed loess based on suction stress[J]. Journal of Hefei University of Technology(Natural Science), 38(5): 648-653. http://www.en.cnki.com.cn/Article_en/CJFDTotal-HEFE201505016.htm
    Zhai Q, Rahardjo H. 2012. Determination of soil-water characteristic curve variables[J]. Computers & Geotechnics, 42(42): 37-43. http://cn.bing.com/academic/profile?id=33353e9f45f463f1fe973fa5ead0e98b&encoded=0&v=paper_preview&mkt=zh-cn
    高游, 孙德安. 2017.单峰和双峰土水特征曲线基本参数的确定[J].岩土工程学报, 39(10): 1884-1891. doi: 10.11779/CJGE201710017
    贾宝新, 王荷, 周琳力, 等. 2018.辽西风积土路基土水特征曲线试验研究[J].工程地质学报, 26(3): 633-638. doi: 10.13544/j.cnki.jeg.2017-264
    李同录, 范江文, 习羽, 等. 2019.击实黄土孔隙结构对土水特征的影响分析[J].工程地质学报, 27(5): 1019-1026. doi: 10.13544/j.cnki.jeg.2019045
    李云峰. 1994.黄土渗透性与空隙性关系的研究[M].北京:地质出版社.
    石振明, 刘巍然, 彭铭, 等. 2018.网纹红土土水特征曲线试验研究及其在边坡稳定性评价中的应用[J].工程地质学报, 26(1): 164-171. doi: 10.13544/j.cnki.jeg.2018.01.018
    唐朝生, 施斌, 顾凯. 2011.土中水分的蒸发过程试验研究[J].工程地质学报, 19(6): 875-881. doi: 10.3969/j.issn.1004-9665.2011.06.012
    陶高梁, 李进, 庄心善, 等. 2018.利用土中水分蒸发特性和微观孔隙分布规律确定SWCC残余含水率[J].岩土力学, 39(4): 1256-1262. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201804014
    王铁行, 李彦龙, 苏立君. 2014.黄土表面吸附结合水的类型和界限划分[J].岩土工程学报, 36(5): 942-948. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201405026
    袁志辉, 倪万魁, 刘茹, 等. 2015.基于吸应力的非饱和黄土抗剪强度研究[J].合肥工业大学学报(自然科学版), 38 (5): 648-653. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hfgydxxb201505016
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  96
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-11
  • 修回日期:  2019-10-25
  • 发布日期:  2020-02-25

目录

    /

    返回文章
    返回