A MODIFIED DUNCAN-CHANG E-B MODEL WITH PARTICLE BREAKAGE FOR CALCAREOUS SAND
-
摘要: 在常规应力水平下颗粒发生破碎是钙质砂有别于其他砂土的重要性质之一,且由于颗粒破碎的存在,使用传统的本构模型无法很好地模拟钙质砂的力学行为。因此本文以最为普及的本构模型之一——邓肯-张E-B模型为基础,对其进行颗粒破碎方面的修正以得到一个能用于钙质砂的本构模型。具体方法为:首先本文采用Hardin提出的相对破碎Br这一指标来度量颗粒破碎的大小。之后研究分析得出了颗粒破碎对邓肯-张模型参数(内摩擦角φ、割线模量E50及体积模量B)的影响规律。然后通过颗粒破碎与输入能量之间的关系将各状态下无法直接确定的相对破碎Br与可确定的应力-应变状态联系起来。最终得到了一个考虑颗粒破碎的钙质砂修正邓肯-张E-B模型。为验证模型的准确性及适用性,本文还使用该模型对4种不同粒径范围且试验围压不同的钙质砂的三轴排水行为进行了模拟。结果表明拟合效果较好,模型能适用于各种不同粒径范围的钙质砂,并且在颗粒破碎较大的情况下明显优于传统邓肯-张模型。Abstract: Particles breakage under normal stress levels distinguishes calcareous sand from other sands and is one of the important properties of calcareous sands. Due to particle breakage, the mechanical behavior of calcareous sands cannot be well simulated using the traditional constitutive models. Therefore, based on the Duncan-Chang E-B model, this paper proposes a constitutive model that can be used for calcareous sands by considering particle breakage. The specific method is as follows. Firstly, this paper uses the relative breakage Br proposed by Hardin to measure the degree of particle breakage. Moreover, the influence of particle breakage on Duncan-Chang model parameters including internal friction angle, secant modulus E50 and bulk modulus B is obtained. Then, the relative breakage Br, which cannot be directly determined in each state, is related to the determinable stress-strain state by the relationship between particle breakage and input energy. Finally, a modified Duncan-Chang E-B model for calcareous sand considering particle breakage is proposed in this paper. In order to verify the accuracy and applicability of the model, this model is used to simulate the triaxial drainage behavior of calcareous sands with four particle sizes. It is shown that the simulation results agree well with the experimental ones, and the modified model is significantly better than the conventional Duncan-Chang E-B model in the case of large particle breakage.
-
Key words:
- Calcareous sand /
- Particle breakage /
- Input energy /
- Modified model /
- Duncan-Chang E-B model
-
表 1 钙质砂基本性质
Table 1. The basic properties of calcareous sands
表 2 模型参数
Table 2. Model constants
参数名称 钙质砂1 钙质砂2 钙质砂3 钙质砂4 Kn1 155.46 189.53 155.36 91.98 n 0.185 0.560 0.315 0.233 Kn2 37 211 5.7 264 Km1 58.89 122.26 60.81 29.98 m 0.045 0.282 0.195 0.079 Km2 0.0232 0.0006 0.0011 0.2211 φ0 45.78 49.47 45.26 48.02 Δφ1 10.95 5.08 7.02 6.04 Δφ2 44.22 8.24 5.16 75.1 a 0.030 05 0.015 37 0.156 26 0.033 65 b 1.003 75 1.001 08 1.001 59 1.006 55 Rf 0.751 0.698 0.680 0.746 -
Chen H D, Wei H Z, Meng Q S, et al. 2018. The study on stress-strain-strength behavior of calcareous sand with particle breakage[J]. Journal of Engineering Geology, 26(6): 1490-1498. Duncan J M, Byme P, Wong K S, et al. 1980. Strength, stress-strain and bulk modulus parameters for finite element analysis of stress and movements in soil masses[D]. California: University of California, Berkeley. Duncan J M, Chang C Y. 1970. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soils Mechanies and Foundation Division, 96(5): 1629-1653. http://cn.bing.com/academic/profile?id=25450e000029ab1a7b8378ae2ba95528&encoded=0&v=paper_preview&mkt=zh-cn Hardin B O. 1985. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177) Jia Y, Xu B, Cai S C, et al. 2017. Research on the particle breakage of rockfill materials during triaxial tests[J]. International Journal of Geomechanics, 17(10): 4017085. doi: 10.1061/(ASCE)GM.1943-5622.0000977 Lade P V, Yamamuro J A, Bopp P A. 1996. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, 122(4): 309-316. doi: 10.1061/(ASCE)0733-9410(1996)122:4(309) Lee K L, Farhoomand I. 1967. Compressibility and crushing of granular soil in anisotropic triaxial compression[J]. Canadian Geotechnical Journal, 4(1): 68-86. doi: 10.1139/t67-012 Liu C Q, Yang Z Q, Wang R. 1995. The present condition and development in studies of mechanical properties of calcareous soils[J]. Rock and Soil Mechanics, 16(4): 74-84. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX504.010.htm Liu H B, Zou D G. 2013. Associated generalized plasticity framework for modeling gravelly soils considering particle breakage[J]. Journal of Engineering Mechanics, 139(5): 606-615. doi: 10.1061/(ASCE)EM.1943-7889.0000513 Marsal R J. 1967. Large-scale testing of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 93(2): 27-43. http://cn.bing.com/academic/profile?id=a9db983879a2aea2cbadb5e58f9e35aa&encoded=0&v=paper_preview&mkt=zh-cn Sun D A, Huang W X, Sheng D C, et al. 2007. An elastoplastic model for granular materials exhibiting particle crushing[J]. Key Engineering Materials, 340-341 : 1273-1278. doi: 10.4028/www.scientific.net/KEM.340-341.1273 Wang G, Ye Q G, Zha J J. 2018. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill[J]. Chinese Journal of Geotechnical Engineering, 40(5): 802-810. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201805004 Wang R, Sun J Z. 2002. Damage-slide coupled interaction behavior of undrained calcareous sand[J]. Journal of Hydraulic Engineering, 33(7): 75-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb200207013 Wang R, Wu W J. 2019. Exploration and research on engineering geological properties of coral reefs--Engaged in coral reef research for 30 years[J]. Journal of Engineering Geology, 27(1): 202-207. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901022.htm Weng Y L. 2017. Research on shear strength and influence mechanism of calcareous sand[D]. Nanning: Guangxi University. Wu J P, Chu Y, Lou Z G. 1997. Influence of particle breakage on deformation and strength properties of calcareous sands[J]. Chinese Journal of Geotechnical Engineering, 19(5): 49-55. http://cn.bing.com/academic/profile?id=78411f49ecc9f2fd6fea6dc6098def16&encoded=0&v=paper_preview&mkt=zh-cn Xu Y F. 2018. PFC2D simulation of rockfill shear strength based on particle fragementation[J]. Journal of Engineering Geology, 26(6): 1409-1414. Yu F W. 2017. Particle breakage and the drained shear behavior of sands[J]. International Journal of Geomechanics, 17(8): 4017041. doi: 10.1061/(ASCE)GM.1943-5622.0000919 Zhang J M. 2004. Study on the fundamental mechanical characteristics of calcareous sand and the influence of particle breakage[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Zhang J M, Zhang L, Liu H, et al. 2008. Experimental research on shear behavior of calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (S1): 3010-3015. http://d.old.wanfangdata.com.cn/Periodical/hbjzkjxyxb201804009 陈火东, 魏厚振, 孟庆山, 等. 2018.颗粒破碎对钙质砂的应力-应变及强度影响研究[J].工程地质学报, 26(6): 1490-1498. doi: 10.13544/j.cnki.jeg.2017-519 刘崇权, 杨志强, 汪稔. 1995.钙质土力学性质研究现状与进展[J].岩土力学, 16(4): 74-84. http://www.cnki.com.cn/Article/CJFDTotal-YTLX504.010.htm 王刚, 叶沁果, 查京京. 2018.珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J].岩土工程学报, 40(5): 802-810. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201805004 汪稔, 孙吉主. 2002.钙质砂不排水性状的损伤-滑移耦合作用分析[J].水利学报, 33(7): 75-78. doi: 10.3321/j.issn:0559-9350.2002.07.013 汪稔, 吴文娟. 2019.珊瑚礁岩土工程地质的探索与研究--从事珊瑚礁研究30a[J].工程地质学报, 27(1): 202-207. doi: 10.13544/j.cnki.jeg.2019-008 翁贻令. 2017.钙质土的抗剪强度及其影响机制研究[D].南宁: 广西大学. 吴京平, 褚瑶, 楼志刚. 1997.颗粒破碎对钙质砂变形及强度特性的影响[J].岩土工程学报, 19(5): 49-55. doi: 10.3321/j.issn:1000-4548.1997.05.008 徐永福. 2018.基于颗粒破碎的粗粒土剪切强度的模拟分析[J].工程地质学报, 26(6): 1409-14144. doi: 10.13544/j.cnki.jeg.2017-432 张家铭. 2004.钙质砂基本力学性质及颗粒破碎影响研究[D].武汉: 中国科学院武汉岩土力学研究所. 张家铭, 张凌, 刘慧, 等. 2008.钙质砂剪切特性试验研究[J].岩石力学与工程学报, 27 (S1): 3010-3015. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2008S1065.htm