NUMERICAL ANALYSIS OF DYNAMIC RESPONSE OF HIGH-SPEED RAILWAY SUBGRADE ORTHOGONALLY CROSSING GROUND FISSURE ZONE
-
摘要: 本文以大西客运专线高速铁路正交跨越地裂缝带为研究对象,基于有限元数值方法建立了高速铁路地基-地裂缝-路堤动力计算模型,模拟分析了高速列车荷载作用下有、无地裂缝带天然地基上路基的动力响应差异特征及影响规律。计算结果表明:列车荷载作用下无地裂缝带场地,路基动位移、加速度和动应力响应基本平稳,没有明显差异现象;而地裂缝带场地路基动位移、路堤本体内加速度均表现为上盘增大、下盘减小,垂直于线路走向路基动位移、加速度幅值衰减下盘大于上盘,地裂缝对加速度影响的临界深度约为地表以下15m;地裂缝的存在引起其上盘路基出现动应力降低和下盘动应力增强现象,地裂缝场地沿深度方向路基动应力影响的临界深度为地表以下10m。上述研究结果可为我国地裂缝发育区高速铁路建设与防灾减灾提供科学依据。Abstract: This paper takes the Datong-Xi'an passenger transport line subgrade orthogonally crossing ground fissure zone as research object. It establishes the foundation-ground fissure-embankment dynamic calculation model of high-speed railway with the finite element numerical method. It simulates and analyzes the dynamic response characteristics of subgrade on natural foundation with and without ground fissure zone under the action of high-speed train load. The results show that the response of dynamic displacement, acceleration and dynamic stratum stress of subgrade in natural site without ground fissure under train load is basically steady without obvious differences. In ground fissure site, the dynamic displacement of subgrade and the acceleration of embankment body both increases in the hanging wall and decreases in the footwall of active ground fissure zone, and the attenuation amplitude of dynamic displacement and acceleration of the subgrade in the footwall is greater than that of the hanging wall of ground fissure zone in perpendicular direction of train line. The critical influence depth of acceleration induced by ground fissure is about 15m below the ground. The dynamic stress in subgrade reduces in the hanging wall and increases in the footwall of ground fissure. The dynamic stress critical depth of subgrade in ground fissure site is 10m below the ground. The research results can provide scientific basis for the construction of high-speed railway and disaster prevention and mitigation in ground fissure development area in China.
-
表 1 地层物理力学参数
Table 1. Stratum physical and mechanical parameters
地层 重度γ
/kN·m-3弹性模量E
/MPa泊松比
μ黏聚力c
/kPa摩擦角φ
/(°)①粉土与粉砂互层 18.0 21 0.34 16.40 28.5 ②粉质黏土与粉(砂)土互层 19.8 30 0.32 23.75 17.0 ③粉质黏土 20.0 40 0.30 32.00 17.5 表 2 CRH380型高速列车模型参数
Table 2. Model parameters of CRH380 high-speed train
参数名称 数值 编组形式/节 8 转向架轴距/m 2.500 车辆宽度/m 3.380 中间车长度/m 25.000 全长/m 203.000 编组重量/kN 3884 转向架轴重/t ≤15 车辆高度/m 3.700 头车长度/m 26.500 转向架中心距/m 17.500 表 3 有限元模型计算参数
Table 3. Calculation parameters of the finite element model
参数名称 重度γ
/kN·m-3弹性模量E
/MPa泊松比
μ黏聚力c
/kPa摩擦角φ
/(°)钢轨 78 2.1×105 0.15 — — 轨枕 25 3×104 0.20 — — 道床 20 200 0.25 0 40 基床表层 19.5 190 0.3 80 30 基床底层 19 120 0.3 70 28 路堤 18.5 60 0.35 60 25 地裂缝 Kn=10 000 kPa,Ks=1000 kPa,c=12 kPa,φ=20° 表 4 跨地裂缝场地路基动力响应影响范围(单位:m)
Table 4. Influence range of dynamic response of subgrade crossing ground fissure site(unit: m)
影响范围 指标 备注 动位移 动加速度 动应力 上盘 下盘 上盘 下盘 上盘 下盘 横向(垂直于线路走向) 40 20 — 各结构层动力响应影响范围存在差异,路基纵向设防长度建议取大值,临界深度指的是地表以下,不包括路堤高度 纵向(线路走向) 基床表层 35 25 基本无变化 35 25 路堤本体 35 15 30 15 20 17 地基内部 32 25 15 13 — 临界深度(Hcr) — 15 10 -
AI Shaer A, Duhamel D, Sab K. et al. 2008. Experimental settlement and dynamic behavior of a portion of ballasted railwaytrack under high speedtrains[J]. Journal of Sound and Vibration, 316(1-5): 211-233. doi: 10.1016/j.jsv.2008.02.055 Bian X C, Chen Y M. 2005. Dynamic analyses of track and ground coupled system with high-speed train loads[J]. Acta Mechanica Sinica, 37(4): 477-484. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb200504013 Dawn T M, Stanworth C G. 1979. Ground vibrations from passing trains[J]. Journal of Sound and Vibration, 66(3): 355-362. doi: 10.1016/0022-460X(79)90852-6 Dong L, Zhao C G, Cai D G, et al. 2008. Method for dynamic response of subgrade subjected to high-spped moving load[J]. Engineering Mechanics, 25 (11): 231-236, 240. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCLX200811040.htm Guo Z G, Wei L M, He Q, et al. 2013. Tests for dynamic response of ballastless track subgrade of Wu-Guang high-speed railway[J]. Journal of Vibration and Shock, 32 (14): 148-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201314025 Guo R, Huang Q B, Zheng B, et al. 2019. Study on effect of piedmont fault of Lishan Mountain on Xi'an metro Lintong line[J]. Journal of Engineering Geology, 27(3): 682-690. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201903025 Huang Q B, Peng J B, Fan H W, et al. 2009. Metro tunnel hazards induced by active ground fissures in Xi'an and relevant control measures[J]. Chinese Journal of Geotechnical Engineering, 31(5): 781-788. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200905023 Ishikawa T, Sekine E, Miura S. 2011. Cyclic deformation of granular material subjected to moving wheel loads[J]. Canadian Geotechnical Journal, 48(5): 691-703. doi: 10.1139/t10-099 Li J B, Zhang H R, Li Z Q. 2011. Large-scale shaking table model test study of dynamic response and dynamic failure of subgrade[J]. Chinese Journal of Rock Mechanics and Engineering, 30 (S2): 3746-3754. Li J S, Li K C. 1995. Finite element analysis for dynamic response of roadbed of highspeed railway[J]. Journal of the China Railway Society, 17(1): 66-75. http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDXB501.009.htm Li M L, Yang T, Yang Z J, et al. 2017. Simulation analysis of Datong-Xi'an Passenger Dedicated Railway crossing ground fissure belt with a small angle[J]. Railway Engineering, 57(9): 112-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tdjz201709028 Liang B, Sun C X. 2006. A study on the sudden changes or double peaks in the dynamic response of subgrade of high speed railway[J]. China Civil Engineering Journal, 39(9): 117-122. Lysmer J, Kuhlemeyer R L. 1969. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics Division, ASCE, 95(4): 859-877. Ma L H, Liang Q H, Gu A J, et al. 2015. Research on impact of Shanghai-Nanjing intercity high-speed railway induced vibration on ambient environment and foundation settlement of adjacent Beijing-Shanghai railway[J]. Journal of the China Railway Society, 37(2): 98-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tdxb201502019 Peng J B, Zhang Q, Huang Q B, et al. 2012. Hazard of ground fissure in Xi'an[M]. Beijing: Science Press: 502-510. Peng J B, Lu Q Z, Huang Q B, et al. 2017. Hazard of ground fissure in Fen-Wei Basin[M]. Beijing: Science Press. Wang J M. 2000. Theory of ground fissures hazards and its ap- plication[M]. Xi'an:Shaanxi Science and Technology Press. Yan Y F, Huang Q B, Yang X J, et al. 2018. Research on the deformation and force characteristics of underground utility tunnel crossing ground fissure[J]. Journal of Engineering Geology, 26(5): 1203-1210. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201805012 Zhang Z T. 2007. Engineering measures study on subgrade passing ground fissures[J]. Subgrade Engineering, (5): 169-170. 边学成, 陈云敏. 2005.列车荷载作用下轨道和地基的动响应分析[J].力学学报, 37(4): 477-484. http://d.old.wanfangdata.com.cn/Periodical/lxxb200504013 长安大学. 2012.大西高铁沿线地裂缝勘察报告[R].西安: 长安大学. 董亮, 赵成刚, 蔡德钩, 等. 2008.高速铁路路基的动力响应分析方法[J].工程力学, 25 (11): 231-236, 240. http://www.cnki.com.cn/Article/CJFDTotal-GCLX200811040.htm 郭瑞, 黄强兵, 郑波, 等. 2019.骊山山前断裂对西安地铁临潼线隧道的影响研究[J].工程地质学报, 27(3): 682-690. doi: 10.13544/j.cnki.jeg.2018-087 郭志广, 魏丽敏, 何群, 等. 2013.武广高速铁路无砟轨道路基动力响应试验研究[J].振动与冲击, 32 (14): 148-152. doi: 10.3969/j.issn.1000-3835.2013.14.025 黄强兵, 彭建兵, 樊红卫, 等. 2009.西安地裂缝对地铁隧道的危害及防治措施研究[J].岩土工程学报, 31(5): 781-788. doi: 10.3321/j.issn:1000-4548.2009.05.023 李金贝, 张鸿儒, 李志强. 2011.路基动力响应与动力破坏的大型振动台模型试验研究[J].岩石力学与工程学报, 30 (S2): 3746-3754. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2011S2050.htm 李军世, 李克钏. 1995.高速铁路路基动力反应的有限元分析[J].铁道学报, 17(1): 66-75. doi: 10.3321/j.issn:1001-8360.1995.01.010 李明俐, 杨涛, 杨宗佶, 等. 2017.大西客运专线小角度穿越地裂缝带的模拟分析[J].铁道建筑, 57(9): 112-115. doi: 10.3969/j.issn.1003-1995.2017.09.28 梁波, 孙常新. 2006.高速铁路路基动力响应中的双峰现象分析[J].土木工程学报, 39(9): 117-122. doi: 10.3321/j.issn:1000-131X.2006.09.020 马利衡, 梁青槐, 谷爱军, 等. 2015.沪宁城际铁路振动对周围环境及邻近铁路地基沉降的影响研究[J].铁道学报, 37(2): 98-105. doi: 10.3969/j.issn.1001-8360.2015.02.015 彭建兵, 张勤, 黄强兵, 等. 2012.西安地裂缝灾害[M].北京:科学出版社. 彭建兵, 卢全中, 黄强兵, 等. 2017.汾渭盆地地裂缝灾害[M].北京:科学出版社. 王景明. 2000.地裂缝及其灾害的理论与应用[M].西安:陕西科学技术出版社. 闫钰丰, 黄强兵, 杨学军, 等. 2018.地下综合管廊穿越地裂缝变形与受力特征研究[J].工程地质报, 26(5): 1203-1210. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201805012 张宗堂. 2007.路基通过地裂缝工程措施研究[J].路基工程, (5): 169-170. doi: 10.3969/j.issn.1003-8825.2007.05.081